

CyberX Threat Intelligence

Rockwell Automation MicroLogix

Remote Code Execution

COYPRIGHTS ©2015, CyberX Israel Ltd.

This document contains proprietary and confidential information. Any unauthorized

reproduction, use or disclosure of this material, or any part thereof, is strictly prohibited.

This document is solely for the use by CyberX Israel Ltd. This work is protected under the

copyright laws. All rights reserved.

Contents
Introduction .. 3

Abstract ... 3

Preparation.. 4

Before Diving In ... 4

Port 80 - HTTP Server .. 4

Port 44818 – EtherNet/IP .. 5

Getting to know the firmware ... 5

Custom Firmware .. 5

Dumping the memory ... 8

Reversing the HTTP server... 9

Mapping potential vulnerable functions ... 9

Validating the function’s vulnerability ... 9

Appendix A .. Error! Bookmark not defined.

Memory dump code for custom firmware .. Error! Bookmark not defined.

POC Python Exploit .. Error! Bookmark not defined.

Introduction
Serving customers worldwide, CyberX enables real-time detection of cyber and operational incidents

by providing complete visibility into operational networks. As part of the research and development

efforts backing its flagship technology, CyberX has created its Industrial Threat Intelligence capabilities.

The CyberX Threat Intelligence team has discovered numerous zero-day vulnerabilities in

Programmable Logical Controllers (PLCs) and industrial equipment, ranging from Denial-of-Service

(DOS) to remote code execution.

CyberX is a member of the Industrial Internet Consortium (IIC) and ICS-ISAC and was recognized by

Gartner as a Cool Vendor in Security for Technology and Service Providers, 2015.

Abstract
This document details the research that led to the finding of a remote code execution vulnerability on

the Allen-Bradley MicroLogix family of controllers from Rockwell Automation.

The vulnerability has been acknowledged by the Department of Homeland Security, and received CVSS

v3 base score of 9.8. Part of the innovative work described in this document, which includes the

creation of a custom firmware, was also presented in the 2015 ICS Cyber Security Conference in Atlanta.

Major part of the interest exhibited was due to the distinct nature of the research, arising when its

results are compared to past vulnerabilities found in Rockwell Automation’s equipment

The document focuses on Allen-Bradley MicroLogix 1100. However, the vulnerability also relates to

MicroLogix 1400. These controllers are used for every type of control application worldwide, rendering

the impact of this research extensive.

http://www.industrialinternetconsortium.org/
http://ics-isac.org/
http://cyberx-labs.com/gartner-cool-vendor-2015/
https://ics-cert.us-cert.gov/advisories/ICSA-15-300-03
http://www.icscybersecurityconference.com/

Preparation
Our target protocol was EtherNet/IP, as it has been

the focal point for numerous customers. This led us

to research the Allen-Bradley MicroLogix 1100.

When choosing a research target it is important to

check the cost-effectiveness of its firmware

availability.

Some vendors do not offer firmware updates, which

means that we would need to extract the firmware

out of the flash. This process is time consuming and

not effective.

However, the firmware for ML1100 was easily

available on the official vendor site.

Although this PLC is almost 10 years old, the latest firmware update was in 2014. Hence, we had to

verify that the latest firmware version is installed on our device.

Before Diving In
The next step is to study everything we can about the device, in order to make the next steps easier.

Connecting it with a simple RJ45 and port scanning it gives us some interesting information.

Port 80 - HTTP Server

The HTTP server is thin and contains statistics about the device, a user management page and some

user defined pages.

The port may be fingerprinted by the HTTP Header Server, which its unique value is A-B WWW/0.1.

Usually custom server headers might be an indication for a custom HTTP implementation.

Port 44818 – EtherNet/IP
This port is interesting because of the information it discloses.

Product name: 1763-L16AWA B/14.00

Vendor ID: Rockwell Automation/Allen-Bradley

Serial number: [DWORD]

Device type: Communications Adapter

Device IP: 192.168.90.90

The product name consists of the catalog number and the firmware version. For example, our catalog

number is 1763-L16AWA which is ML1100, and the firmware version is B/14.00 which is version 14, the

latest firmware.

Getting to know the firmware
We have extracted the file ML1100_R03R14_Os.bin from the flashing utility and decided to scan it with

binwalk. The scan did not yield any significant results due to the fact that the image is a one large binary

blob.

The next step was to determine the CPU type which this firmware runs on. Although Allen-Bradley

states in their official documentation that the CPU architecture is unique and proprietary, a quick search

on the internet revealed it is a ColdFire v2 CPU.

Loading it into IDA Pro with the ColdFire CPU configuration and instructing IDA to disassemble from the

first instruction, showed us that the firmware starts with a JMP opcode.

Because we did not provide the real loading offset, IDA could not analyze the image.

The flashing utility also includes a file by the name ML1100_R03R14_Os.nvs. This is a configuration file

containing the value StartingLocation = 0x00008000, which is the real ROM offset.

To determine the RAM offset and size, we looked into the offsets referenced by the disassembled

opcodes, and chose values that cover their ranges.

Custom Firmware
To better understand the firmware workings and to develop a working remote code execution exploit,

we had to get a better overview of the memory. Since we could not find any memory leak vulnerabilities

we have decided to create a custom firmware. This firmware shall allow us to dump memory.

The first attempt to patch and upload the firmware was not successful. This is due to the boot firmware

returning an error, stating that we tried to upload a corrupted firmware. We have assumed that some

checksum algorithm exists.

There are many kinds of checksums, so first we had to figure out whether the checksum is position

dependent like CRC/MD5, or just a regular checksum that sums all the bytes or their LSB or anything

similar to that. In order to test this we used the latest firmware and swapped 2 bytes of code. Uploading

it to the device was successful. This led us to the conclusion that the error checking algorithm is position

independent.

Now that we know this is just a plain old checksum algorithm, we started to study the header.

By comparing several firmware images we noticed the changes between them and how they affect the

bytes in the header. We concluded there are 2 checksums, one for the header and one for everything

else.

The first noticeable change is the version. The byte 0xE means its firmware version 14.

By changing only these bytes the firmware will not be accepted, which mean they are included in a

checksum.

This gave us the ability to tweak the header. Below is a firmware with a nonexistent version 99:

Figuring out the checksum algorithm for the whole file is very problematic, since it requires guessing

the fields that should be summed. Therefore we tried another approach.

First we defined where the code starts:

Then we made the following assumption:

[Global checksum] = [Header fields checksum] + [Code area checksum]

This means that patching the code area affects the global checksum. So instead of trying to find out

which algorithm is needed to calculate the global checksum, we calculated once the whole code area

checksum, and for every patch we applied we simply modified a few bytes in order to make sure the

new checksum has the same value as the original.

This process allows us to maintain the same checksum as before, and to successfully upload the patched

firmware image.

Dumping the memory
In order to achieve our goal of dumping the memory, we have chosen to modify an HTTP page handler.

Choosing a page handler will allow us to make sure the device boots and works properly, and to trigger

the execution of our code only upon the sending of an HTTP request. This method has proven itself

beneficial for debugging purposes, since it allows us to make sure that in case our custom patch is not

stable it will crash only at that point.

Another important issue to note about the patching is the necessity to use only a limited set of

instructions. While this appears to be a standard ColdFire CPU, the instruction set lacks a large amount

of instructions, probably due to optimization. This caused our custom patch to fail. In order to overcome

this issue, we have made sure we use only instructions that were observed in the original image.

Patching the page handler was comprised of stripping out of all of its functionality, and replacing it with

our code. This code takes the first key and value from the HTTP arguments, converts it to 2x32 bit

integers, and dumps all the memory between these two resulting integers.

Reversing the HTTP server
The HTTP server is a proprietary implementation by Allen-Bradley. A noticeable issue is a strong

indicator for secure code development due to the limitation of size of almost all input buffers.

Mapping potential vulnerable functions
In order to facilitate the process of mapping potential vulnerable functions, we have decided to write

IDA python scripts to map the functions under the HTTP parsing tree code that may cause a buffer

overflow vulnerability.

The script that found the vulnerability did it by traversing the HTTP parsing code tree and mapping all
the copy patterns in that tree.

Validating the function’s vulnerability
In order for a function to be vulnerable to buffer overflow, it has to copy certain amount of data into a
smaller buffer. The function we decided to focus on is responsible for parsing authorization digest
header inside the authentication function.

Now that we know which function is vulnerable to buffer overflow, we can send some non-existent

addresses and see how the device crashes. However, crashing the device is not enough to prove that

it is possible to cause code execution.

Although there might be other ways, the easiest way to send our shellcode along with the exploit was

to place it in the URI as an argument, since all of the arguments are parsed and placed into a constant

address in the memory. The shellcode we have written prints the word “ CyberX “ as part of the PLC’s

menu. The images below display the PLC’s menu before and after the execution of our exploit.

Before running the POC

After running the POC

