
OPC Data Access Custom Interface Specification 2.04

TM

Data Access Custom Interface
Standard

Version 2.05A

June 28 2002

OPC Data Access Custom Interface Specification 2.05

Specification Type Industry Standard Specification

Title: OPC Data Access Custom

Interface Specification
Date: June 28, 2002

Version: 2.05A Soft MS-Word
 Source: opcda205a_cust

Author: Opc Foundation Status: Released

Synopsis:
This specification is the specification of the interface for developers of OPC
Data Access clients and OPC servers.. The specification is a result of an
analysis and design process to develop a standard interface to facilitate the
development of servers and clients by multiple vendors that shall inter-operate
seamlessly together.

Trademarks:
Most computer and software brand names have trademarks or registered
trademarks. The individual trademarks have not been listed here.

Required Runtime Environment:
This specification requires Windows 95, Windows NT 4.0 or later

 ii

OPC Data Access Custom Interface Specification 2.05

NON-EXCLUSIVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation”), has established a set of standard
OLE/COM interface protocols intended to foster greater interoperability between automation/control
applications, field systems/devices, and business/office applications in the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the
“OPC Materials”), form a set of standard OLE/COM interface protocols based upon the functional
requirements of Microsoft’s OLE/COM technology. Such technology defines standard objects, methods,
and properties for servers of real-time information like distributed process systems, programmable logic
controllers, smart field devices and analyzers in order to communicate the information that such servers
contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, a license to use,
and provide User with a copy of, the current version of the OPC Materials so long as User abides by the
terms contained in this Non-Exclusive License Agreement (“Agreement”). If User does not agree to the
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in
all formats) of such materials in User’s possession must either be destroyed or returned to the OPC
Foundation. By using the OPC Materials, User (including any employees and agents of User) agrees to be
bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grants to User a non-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materials in order to
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the
standards included in the OPC Materials.

All copies of the OPC Materials made and/or distributed by User must include all copyright and other
proprietary rights notices include on or in the copy of such materials provided to User by the OPC
Foundation.

The OPC Foundation shall retain all right, title and interest (including, without limitation, the copyrights) in
the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:

User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes
only in order to help User understand Microsoft’s OLE/COM technology. THE OPC MATERIALS ARE
PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARS ALL RISK
RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The
OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet
User’s requirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITS MEMBERS, OR ANY THIRD PARTY BE
LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED
TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES)
OR INJURIES INCURRED BY USER OR ANY THIRD PARTY AS A RESULT OF THIS
AGREEMENT OR ANY USE OF THE OPC MATERIALS.

 iii

OPC Data Access Custom Interface Specification 2.05

GENERAL PROVISIONS:

This Agreement and User’s license to the OPC Materials shall be terminated (a) by User ceasing all use of
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC
Foundation, at its option, if User commits a material breach hereof. Upon any termination of this
Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its
possession and take such other actions as the OPC Foundation may reasonably request to ensure that no
copies of the OPC Materials licensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to
any person or destination that is not authorized to receive them under the export control laws and
regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by
the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs
227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at
DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer is the OPC Foundation, P.O. Box
140524, Austin, Texas 78714-0524.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the
validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its
choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any
prior understanding or agreement (oral or written) relating to, the OPC Materials.

 iv

OPC Data Access Custom Interface Specification 2.05

Revision 2.05A Highlights
This revision clarifies section 4.2.13 Note (5) regarding roundup when converting floats and doubles to
integers. Also correct an error in the property definitions in Appendix D (200-207 were off by 1).

Revision 2.05 Highlights
This revision includes numerous clarifications to Section 4.2.13 regarding data conversion between Native
and Requested data types.

Revision 2.04 Highlights
This revision includes additional minor clarifications to certain ambiguities which were discovered during
Interoperability sessions and during the development of the Compliance Test. The affected sections
include: TimeBias and DeadBand discussion in Group Object: General Properties (4.5.1). LocaleID for
SetState (to make it clear the behaviour is optional). Addition or Clarification of error returns
E_INVALIDARG and S_FALSE return for GetItemProperties, LookupItemIDs, AddItems, ValidateItems,
RemoveItems, SetActiveState, SetClientHandles, SetDataTypes, both SyncIO and AsyncIO Read and
Write. In particular for S_FALSE: change 'was partially successful' to 'completed with one or more errors'.
This now clearly implies that the method outputs (specifically the ppErrors returns) are defined in this case.
Other adjustments to the text were to make error returns more consistant across functions. Clarify
GetItemID behavior. In Refresh2 and IOPCDataCallback::OnDataChange the Transaction ID parameter is
clarified. Specifically: 0 is an allowed value. See also the introduction to OPCAsyncIO (4.5.6). Also add
section 4.2.14 as a general discussion of Client and Server responsibilites regarding LocaleID.

Revision 2.03 Highlights
This revision includes minor clarifications to the Deadband discussion (4.5.1.6). It also clarifies the
behavior of empty enumerators; The descriptions of IOPCServer::CreateGroupEnumerator and
IOPCBrowseServerAddressSpace::BrowseAccessPaths have been clarified and corrected. They are now
consistant with the existing description of IOPCBrowseServerAddressSpace::BrowseOPCItemIDs.

Revision 2.02 Highlights
This revision includes minor clarifications to the OPCItemProperties Interface discussions (4.4.6),
GroupStateMgt::SetState (4.5.3.2) and the old (1.0) Stream Marshalling Discussion (4.6.4.6).

Revision 2.01 Highlights
This revision includes clarifications to the dwAccessRightsFilter in IOPCBrowseServerAddressSpace and
also the discussion of access rights in general (section 6.7.6).

Revision 2.0 Highlights
This revision includes enhancements to the 1.0A Specification. Although changes were made throughout
the document, the following areas are or particular importance:

• This is now refered to as the OPC Data Access Specification as there are other OPC efforts underway.
• The Automation Interface specification has been separated into a separate document.
• All previous (1.0A) Custom Interfaces remain in place and unchanged except for minor clarifications.
• Async and exception based connections should now be done using ConnectionPoints rather than

IDataObject. The existing IOPCAsyncIO, IDataObject and Client side IAdviseSink interfaces support
‘old style’ (Version 1.0) connections. The new IOPCAsyncIO2, IConnectionPointContainer and Client
side IOPCDataCallback interfaces support the ‘new style’ Version 2.0 connections.

• The behavior of the existing IOPCAsyncIO, IDataObject and Client side IAdviseSink interfaces is
unchanged however their support is optional for OPC 2.0 complaint software. The new

 v

OPC Data Access Custom Interface Specification 2.05

IOPCAsyncIO2, IConnectionPointContainer and Client side IOPCDataCallback interfaces are required
for 2.0 compliant software.

• A new ‘convenience’ interface is defined. IOPCItemProperties allows easy access to common and
vendor specific properties or attributes of an Item or Tag.

• A ShutdownRequest capability is added via a Connection point on the Server object and a Client side
IOPCShutdown interface that allows the server to request that all clients disconnect from the server.
This interface will also be used by other OPC server types.

• An IOPCCommon interface is added to the server. This interface provides several common LocaleID
related functions. This interface will also be used by other OPC server types.

• The OPC_BROWSE_TO capability is added to BrowseServerAddressSpace.

 vi

OPC Data Access Custom Interface Specification 2.05

Table of Contents

1 INTRODUCTION ...1

1.1 AUDIENCE ..1
1.2 DELIVERABLES...1

2 OPC DATA ACCESS FUNDAMENTALS ...2

2.1 OPC OVERVIEW...2
2.2 WHERE OPC FITS...3
2.3 GENERAL OPC ARCHITECTURE AND COMPONENTS ...4
2.4 OVERVIEW OF THE OBJECTS AND INTERFACES...6
2.5 THE ADDRESS SPACE AND CONFIGURATION OF THE SERVER ...7
2.6 APPLICATION LEVEL SERVER AND NETWORK NODE SELECTION ...8
2.7 SYNCHRONIZATION AND SERIALIZATION ISSUES..8
2.8 PUBLIC (AKA SHARED) GROUPS ...9
2.9 PERSISTENT STORAGE STORY..9

3 OPC DATA ACCESS QUICK REFERENCE..10

3.1 CUSTOM INTERFACE...10
3.1.1 OPCServer Object ...11
3.1.2 OPCGroup Object..13
3.1.3 EnumOPCItemAttributes Object ...14

3.2 CUSTOM INTERFACE/CLIENT SIDE ...15

4 OPC CUSTOM INTERFACE..16

4.1 OVERVIEW OF THE OPC CUSTOM INTERFACE ..16
4.2 GENERAL INFORMATION ..17

4.2.1 Version Interoperability...17
4.2.2 Ownership of memory ...18
4.2.3 Standard Interfaces ..18
4.2.4 Null Strings and Null Pointers ...18
4.2.5 Returned Arrays...18
4.2.6 Public Groups ..18
4.2.7 CACHE data, DEVICE data and TimeStamps ..19
4.2.8 Time Series Values..19
4.2.9 Asynchronous vs. Synchronous Interfaces ..19
4.2.10 The ACTIVE flags, Deadband and Update Rate ...19
4.2.11 Errors and return codes..20
4.2.12 Startup Issues...20
4.2.13 VARIANT Data Types and Interoperability..20
4.2.14 Localization and LocaleID ..23

4.3 DATA ACQUISITION AND ACTIVE STATE BEHAVIOR ..24
4.3.1 IOPCSyncIO..24
4.3.2 IOPCASyncIO2...25
4.3.3 SUBSCRIPTION via IOPCDataCallback ...26
4.3.4 IOPCASyncIO (old) ..27
4.3.5 SUBSCRIPTION via IDataObject (old)..28

4.4 OPCSERVER OBJECT..29
4.4.1 Overview ...29
4.4.2 IUnknown ..30
4.4.3 IOPCCommon ...30
4.4.4 IOPCServer..31
4.4.5 IConnectionPointContainer (on OPCServer)...40
4.4.6 IOPCItemProperties...43
4.4.7 IOPCServerPublicGroups (optional) ...55

 vii

OPC Data Access Custom Interface Specification 2.05

4.4.8 IOPCBrowseServerAddressSpace (optional) ..58
4.4.9 IPersistFile (optional) ..67

4.5 OPCGROUP OBJECT...71
4.5.1 General Properties ...72
4.5.2 IOPCItemMgt ..75
4.5.3 IOPCGroupStateMgt ...84
4.5.4 IOPCPublicGroupStateMgt ...91
4.5.5 IOPCSyncIO..93
4.5.6 IOPCAsyncIO2..99
4.5.7 IConnectionPointContainer (on OPCGroup)...111
4.5.8 IEnumOPCItemAttributes ...114
4.5.9 IOPCAsyncIO (old) ...118
4.5.10 IDataObject (old)...127

4.6 CLIENT SIDE INTERFACES...132
4.6.1 IOPCDataCallback ..132
4.6.2 IOPCShutdown..140
4.6.3 IAdviseSink (old) ..141
4.6.4 IAdviseSink - Data Stream Formats (old) ...143

5 INSTALLATION ISSUES..148

5.1 COMPONENT CATEGORIES..148
5.2 REGISTRY ENTRIES FOR CUSTOM INTERFACE ..148
5.3 REGISTRY ENTRIES FOR THE PROXY/STUB DLL ..149

6 DESCRIPTION OF DATA TYPES, PARAMETERS AND STRUCTURES..............................150

6.1 ITEM DEFINITION..150
6.2 ACCESSPATH..151
6.3 BLOB..152
6.4 TIME STAMPS ...152
6.5 VARIANT DATA TYPES FOR OPC DATA ITEMS...153
6.6 CONSTANTS..154

6.6.1 OPCHANDLE...154
6.7 STRUCTURES AND MASKS ..155

6.7.1 OPCITEMSTATE ...155
6.7.2 OPCITEMDEF ..156
6.7.3 OPCITEMRESULT...157
6.7.4 OPCITEMATTRIBUTES ..158
6.7.5 OPCSERVERSTATUS ...160
6.7.6 Access Rights ..161

6.8 OPC QUALITY FLAGS...162

7 SUMMARY OF OPC ERROR CODES...166

8 APPENDIX A - OPCERROR.H ..168

9 APPENDIX B - DATA ACCESS IDL SPECIFICATION...172

10 APPENDIX D - OPCPROPS.H..185

 viii

OPC Data Access Custom Interface Specification 2.05

1 Introduction
A General Introduction to OPC is contained in a separate OPC Overview Document
(OPCOVW.DOC). This particular document deals specifically with the OPC Data Access Interfaces.

1.1 Audience
This specification is intended as reference material for developers of OPC compliant Clients and
Servers. It is assumed that the reader is familiar with Microsoft OLE/COM technology and the needs
of the Process Control industry.

This specification is intended to facilitate development of OPC Servers in C and C++, and of OPC
client applications in the language of choice. Therefore, the developer of the respective component is
expected to be fluent in the technology required for the specific component.

1.2 Deliverables
The deliverables from the OPC Foundation with respect to the OPC Data Access Specification 2.0
include the OPC Specification itself, OPC IDL files (included in this document as Appendices) and the
OPC Error header files (included in this document). As a convenience, standard proxystub DLLs and a
standard Data Access Header file for the OPC interfaces generated directly from the IDL will be
provided at the OPC Foundation Web Site.

This OPC Data Access specification contains design information for the following:

1. The OPC Data Access Custom Interface - This document will describe the Interfaces and
Methods of OPC Components and Objects.

2. The OPC Data Access Automation Interface - A Separate Document (The OPC Data Access
Automation Specification 2.0) will describe the OPC Automation Interfaces which facilitate the
use of Visual Basic, Delphi and other Automation enabled products to interface with OPC Servers.

 1

OPC Data Access Custom Interface Specification 2.05

2 OPC Data Access Fundamentals
This section introduces OPC Data Access and covers topics which are specific to OPC Data Access.
Additional common topics including Windows NT, UNICODE, Threading Models, etc are discussed
in the OPC Overview Document (OPCOVW.DOC).

2.1 OPC Overview
This specification describes the OPC COM Objects and their interfaces implemented by OPC Servers.
An OPC Client can connect to OPC Servers provided by one or more vendors.

OPC Client

OPC
Server

Vendor A

OPC
Server

Vendor C

OPC
Server

Vendor B

Figure 2-1 OPC Client

Different vendors may provide OPC Servers. Vendor supplied code determines the devices and data to
which each server has access, the data names, and the details about how the server physically accesses
that data. Specifics on naming conventions are supplied in a subsequent section.

OPC Client #1

OPC
Server

Vendor A

OPC
Server

Vendor C

OPC
Server

Vendor B
OPC Client #2

OPC Client #3

Figure 2-2 OPC Client/Server Relationship

At a high level, an OPC server is comprised of several objects: the server, the group, and the item. The
OPC server object maintains information about the server and serves as a container for OPC group
objects. The OPC group object maintains information about itself and provides the mechanism for
containing and logically organizing OPC items.

The OPC Groups provide a way for clients to organize data. For example, the group might represent
items in a particular operator display or report. Data can be read and written. Exception based

 2

OPC Data Access Custom Interface Specification 2.05

connections can also be created between the client and the items in the group and can be enabled and
disabled as needed. An OPC client can configure the rate that an OPC server should provide the data
changes to the OPC cleint.

There are two types of groups, public and local (or ‘private’). Public is for sharing across multiple
clients, local is local to a client. Refer to the section on public groups for the intent, purpose, and
functionality and for further details. There are also specific optional interfaces for the public groups.

Within each Group the client can define one or more OPC Items.

Item 1

Group

Item 2

Item 3

Figure 2-3 - Group/Item Relationship

The OPC Items represent connections to data sources within the server. An OPC Item, from the custom
interface perspective, is not accessible as an object by an OPC Client. Therefore, there is no external
interface defined for an OPC Item. All access to OPC Items is via an OPC Group object that
“contains” the OPC item, or simply where the OPC Item is defined.

Associated with each item is a Value, Quality and Time Stamp. The value is in the form of a
VARIANT, and the Quality is similar to that specified by Fieldbus.

Note that the items are not the data sources - they are just connections to them. For example, the tags
in a DCS system exist regardless of whether an OPC client is currently accessing them. The OPC Item
should be thought of as simply specifying the address of the data, not as the actual physical source of
the data that the address references.

2.2 Where OPC Fits
Although OPC is primarily designed for accessing data from a networked server, OPC interfaces can
be used in many places within an application. At the lowest level they can get raw data from the
physical devices into a SCADA or DCS, or from the SCADA or DCS system into the application.. The
architecture and design makes it possible to construct an OPC Server which allows a client application
to access data from many OPC Servers provided by many different OPC vendors running on different
nodes via a single object.

Application OPC I/F OPC
Server

OPC I/F SCADA
System

Physical I/F

Physical I/F Physical
I/O

Physical
I/O

Figure 2-4 - OPC Client/Server Relationship

 3

OPC Data Access Custom Interface Specification 2.05

2.3 General OPC Architecture and Components
OPC is a specification for two sets of interfaces; the OPC Custom Interfaces and the OPC Automation
interfaces. A revised automation interface will be provided with release 2.0 of the OPC specification.
This is shown below.

C++ Application

VB Application

OPC Custom I/F

OPC Automation I/F

OPC Server
(In-Proc, Local, Remote,

Handler)

Vendor Specific
Logic

Figure 2-5 - The OPC Interfaces

The OPC Specification specifies COM interfaces (what the interfaces are), not the
implementation (not the how of the implementation) of those interfaces. It specifies the behavior
that the interfaces are expected to provide to the client applications that use them.

Included are descriptions of architectures and interfaces that seemed most appropriate for those
architectures. Like all COM implementations, the architecture of OPC is a client-server model where
the OPC Server component provides an interface to the OPC objects and manages them.

There are several unique considerations in implementing an OPC Server. The main issue is the
frequency of data transfer over non-sharable communications paths to physical devices. Thus, we
expect that the OPC Server will either be a local or remote EXE which includes code that is
responsible for efficient data collection from a physical device.

An OPC client application communicates to an OPC server through the specified OPC custom and
automation interfaces. OPC servers must implement the custom interface, and optionally may
implement the automation interface.

An inproc (OPC handler) may be used to marshal the interface and provide the additional Item level
functionality of the OPC Automation Interface. Refer to the figure below: Typical OPC Architecture.

OPC Automation

 Interface

OPC Custom Interface

Local or Remote
OPC Server

(Shared by many clients)

Server Data Cache

Physical
Device

Device Data

OPC Automation
Wrapper

VB
Application

C++
Application

Figure 2-6 - Typical OPC Architecture

 4

OPC Data Access Custom Interface Specification 2.05

It is also expected that the server will consolidate and optimize data accesses requested by the various
clients to promote efficient communications with the physical device. For inputs (Reads), data
returned by the device is buffered for asynchronous distribution or synchronous collection by various
OPC clients. For outputs (writes), the OPC Server updates the physical device data on behalf of OPC
Clients.

 5

OPC Data Access Custom Interface Specification 2.05

2.4 Overview of the Objects and Interfaces
The OPC Server object provides a way to access (read/write) or communicate to a set of data sources..
The types of sources available are a function of the server implementation.

An OPC client connects to an OPC server and communicates to the OPC server through the interfaces.
The OPC server object provides functionality to an OPC client to create and manipulate OPC group
objects. These groups allow clients to organize the data they want to access. A group can be activated
and deactivated as a unit. A group also provides a way for the client to ‘subscribe’ to the list of items
so that it can be notified when they change.

Note: All COM objects are accessed through Interfaces. The client sees only the interfaces. Thus, the
objects described here are ‘logical’ representations which may not have anything to do with the actual
internal implementation of the server. The following figure is a summary of the OPC Objects and their
interfaces. Note that some of the interfaces are Optional (as indicated by []).

IOPCCommon

IOPCServer

[IOPCServerPublicGroups]

[IOPCBrowseServerAddressSpace]

[IPersistFile]

IConnectionPointContainer

IUnknown

Standard
OPC Server

Object

Figure 2-7 - Standard OPC Server Object

 6

OPC Data Access Custom Interface Specification 2.05

IUnknown

 IOPCGroupStateMgt

 [IOPCASy

IOPCItemMgt

[IOPCPublicGroupStateMgt]

IOPCSyncIO

IOPCASyncIO2

IConnectionPointContainer

ncIO] old

[IDataObject] old

Standard
OPC Group

Object

Figure 2-8 - Standard OPC Group Object

2.5 The Address Space and Configuration of the Server

This release of the OPC specification assumes that a server configuration address space may be
managed and persistently stored using the IPersistFile interface. Only the server specific information
is persistently stored. All client configuration information (Group and Item Definitions) must be
persistently stored by the respective client application. All Handles that are defined in the system are
not guaranteed to have the same value between sessions of the client and server conversation.

It is important to distinguish the address space of the server (also known as the server configuration)
from the small subsets of this space that a particular client may be interested in at a particular time
(also known as the ‘groups’ and ‘items’). The details of how these client specific groups are
maintained are discussed in detail in this specification. The persistent storage of groups is the
responsibility of the respective clients. The details of how the server address space is defined and
configured are intentionally left unspecified. For example the server address space might be:

• Entirely fixed (e.g. for a dedicated interface to a particular device such as a scale).

• Configured entirely outside of the OPC environment (e.g. for an interface to an
existing external DCS system).

• Automatically configured at startup by an ‘intelligent’ server which can poll the
existing system for installed hardware or interfaces.

• Automatically configured on the fly by an ‘intelligent’ server based on the names of
the data items the client applications are currently requesting.

 7

OPC Data Access Custom Interface Specification 2.05

It is expected that this server address space is stable and is managed within the server. The clients will
define and manage the relatively small lists of items called ‘groups’ as needed from time to time. The
interfaces described here provide the client the ability to easily define, manage, and recreate these lists
as needed through the use of ‘OPCGroups’. The clients direct the server to create, manage and delete
these groups on their behalf (persistence of the groups is the responsibility of the client application).
Although it is possible, with the usage of public groups, that the server could provide persistent storage
of these type of groups, or treat them as server defined groups.

2.6 Application Level Server and Network Node Selection
OPC Data Access supports the concept of organizing client requests into groups within a server. Such
groups can contain requests for data from only one particular OPC Server object. In order to access
data, a client application will need to specify the following:

• The name of the OPC Data Access Server (for use by CoCreateInstance, CoCreateInstanceEx,
etc.)

• The name of the machine hosting the OPC Data Access Server (for use by
CoCreateInstanceEx)

• The vendor specific OPC Item Definition (the name of the specific data item in the server’s
address space)

It is beyond the scope of this specification to discuss the implications of this on the architecture and
user interface of the client program.

2.7 Synchronization and Serialization Issues
By ‘synchronization’ we mean the ability of a client to read or write values and attributes in a single
transaction. For example, most applications want to insure that the value, quality and time stamp
attributes of a particular item are in ‘sync’. Also, a reporting package might want to insure that a
group of several values read together as part of a ‘Batch Report’ are in fact part of the same batch.
Finally, a recipe download package would want to insure that all of the values in the group were sent
together and that the recipe was not started until all of the values had been received. These are just a
few examples where synchronization is important.

The short answer is that OPC itself cannot insure that all of these synchronization tasks can be
accomplished. Additional handshaking and flag passing between the client application and the device
server to signal such states as ‘ready’ and ‘complete’ will be required. There are also things that need
to be specified about the behavior of OPC servers to assure that OPC does not prevent this sort of
synchronization from being done.

It will be seen later that OPC allows explicit reads and writes of groups of items or of individual items
as well as exception based data connections (OnDataChange). Without jumping ahead too far it is
possible to make some general observations about these issues and about server behavior.

1. In general, OPC Servers should try to preserve synchronization of data items and attributes that are
read or written in a single operation. Synchronization of items read or written individually in
separate operations is not required. Clearly, data read from different physical devices is difficult
to synchronize.

2. Reads and writes of data items which can be accessed by more than one thread must be
implemented to be thread safe, to the extent that data synchronization is preserved as specified in
this specification. Examples of where this is important might include: logic within a server where
one thread services method executions while a separate thread performs the physical
communications and writes the received data into a buffer area which is shared with the first
thread. Another example might be the logic in a handler or proxy where a ‘hidden’ RPC thread
servicing an OnDataChange subscription is writing data into a shared buffer which a thread in the
client might be reading.

 8

OPC Data Access Custom Interface Specification 2.05

3. Threading issues are always important but this is especially true on SMP systems.

By ‘Serialization’ we mean the ability of the client to control the order in which writes are performed.

1. It is STRONGLY RECOMMENDED that write requests to the same device be handled ‘in-order’
by any server implementation. For example, an application might use a ‘recipe download
complete’ flag which is set by the application after the individual recipe items are sent. In this
case, the data must be transmitted to the physical device in the same order it was output to insure
that the ‘complete’ flag is not set before all the data has actually arrived. Where the server buffers
the outgoing data and implements a separate communications manager thread to send these
outputs to the physical device (as is often the case), the server implementation must take extra care
to insure that the order of the outputs is preserved.

2. Where a client can both read values explicitly or receive updates via a callback attention must be
given to defining exactly when a callback will or will not occur. This is discussed in more detail
later.

Many of these issues will be clarified in the detailed descriptions of the methods below.

2.8 Public (aka shared) Groups
The purpose of the public group concept is to provide a way to share data configuration information
across multiple client applications. Typically, in process control systems, multiple client applications
are configured to monitor or control the same process control data using the same applications or tools.
A public group can be created, such that only one application / end-user defines the items, and other
client applications access the information in the public group by connecting to it. This facilitates
keeping the definitions of the same data in sync, since only one client has to create and configure the
attributes of the data items.

Because the information is shared across multiple clients, some restrictions may be required to make
sure that the configuration information across multiple clients remains consistent.

2.9 Persistent Storage Story
OPC Servers may implement an optional interface to facilitate OPC clients telling an OPC server to
persistent (store) the OPC server configuration information. OPC Server configuration information
may include information about the devices and data source necessary to facilitate communication
between the data source and the OPC server. Client configuration information, including the groups
and items, are not persistently stored by an opc server.

Clients are responsible for the configuration and persistent storage of the groups and items that are
required by their application..

 9

OPC Data Access Custom Interface Specification 2.05

3 OPC Data Access Quick Reference
This section includes a quick reference for the methods on the Custom Interface. These interfaces, their
parameters and behavior are defined in more detail later in the reference sections.

3.1 Custom Interface
Note: This section does not show additional standard COM Interfaces such as IUnknown, IEnumString
and IEnumUnknown used by OPC Data Access.

 OPCServer
 IOPCServer
 IOPCServerPublicGroups (optional)
 IOPCBrowseServerAddressSpace (optional)
 IOPCItemProperties (new 2.0)
 IConnectionPointContainer (new 2.0)
 IOPCCommon (new 2.0)
 IPersistFile (optional)
 OPCGroup
 IOPCGroupStateMgt
 IOPCPublicGroupStateMgt (optional)
 IOPCASyncIO2 (new 2.0)
 IOPCAsyncIO (obsolete - V1)
 IOPCItemMgt
 IConnectionPointContainer (new 2.0)
 IOPCSyncIO
 IDataObject (obsolete - V1)
 EnumOPCItemAttributes
 IEnumOPCItemAttributes

 10

OPC Data Access Custom Interface Specification 2.05

3.1.1 OPCServer Object

IOPCCommon

HRESULT SetLocaleID (dwLcid)
HRESULT GetLocaleID (pdwLcid)
HRESULT QueryAvailableLocaleIDs (pdwCount, pdwLcid)
HRESULT GetErrorString (dwError, ppString)
HRESULT SetClientName (szName)

IOPCServer

HRESULT AddGroup(szName, bActive, dwRequestedUpdateRate, hClientGroup, pTimeBias,

pPercentDeadband, dwLCID, phServerGroup, pRevisedUpdateRate, riid, ppUnk)
HRESULT GetErrorString(dwError, dwLocale, ppString)
HRESULT GetGroupByName(szName, riid, ppUnk)
HRESULT GetStatus(ppServerStatus)
HRESULT RemoveGroup(hServerGroup, bForce)
HRESULT CreateGroupEnumerator(dwScope, riid, ppUnk)

IConnectionPointContainer

HRESULT EnumConnectionPoints(IEnumConnectionPoints ppEnum);
HRESULT FindConnectionPoint(REFIID riid, IConnectionPoint ppCP);

IOPCItemProperties
HRESULT QueryAvailableProperties(szItemID, pdwCount,

ppPropertyIDs, ppDescriptions, ppvtDataTypes);
HRESULT GetItemProperties (szItemID, dwCount, pdwPropertyIDs,

ppvData, ppErrors);
HRESULT LookupItemIDs(szItemID, dwCount, pdwPropertyIDs,

ppszNewItemIDs, ppErrors);

 11

OPC Data Access Custom Interface Specification 2.05

IOPCBrowseServerAddressSpace (optional)

HRESULT QueryOrganization(pNameSpaceType);
HRESULT ChangeBrowsePosition(dwBrowseDirection, szString);
HRESULT BrowseOPCItemIDs(dwBrowseFilterType, szFilterCriteria, vtDataTypeFilter,

dwAccessRightsFilter, ppIEnumString);
HRESULT GetItemID(szItemDataID, szItemID);
HRESULT BrowseAccessPaths(szItemID, ppIEnumString);

IOPCServerPublicGroups (optional)

HRESULT GetPublicGroupByName(szName, riid, ppUnk);
HRESULT RemovePublicGroup(hServerGroup, bForce);

IPersistFile (optional)
HRESULT IsDirty();
HRESULT Load(pszFileName, dwMode);
HRESULT Save(pszFileName, fRemember);
HRESULT SaveCompleted(pszFileName);
HRESULT GetCurFileName(ppszFileName);

 12

OPC Data Access Custom Interface Specification 2.05

3.1.2 OPCGroup Object

IOPCGroupStateMgt

HRESULT GetState(pUpdateRate, pActive, ppName, pTimeBias, pPercentDeadband, pLCID,

phClientGroup, phServerGroup)
HRESULT SetState(pRequestedUpdateRate, pRevisedUpdateRate, pActive, pTimeBias,

pPercentDeadband, pLCID, phClientGroup)
HRESULT SetName(szName);
HRESULT CloneGroup(szName, riid, ppUnk);

IOPCPublicGroupStateMgt (optional)

HRESULT GetState(pPublic);
HRESULT MoveToPublic(void);

IOPCSyncIO

HRESULT Read(dwSource, dwCount, phServer, ppItemValues, ppErrors)
HRESULT Write(dwCount, phServer, pItemValues, ppErrors)

IOPCAsyncIO2

HRESULT Read(dwCount, phServer, dwTransactionID, pdwCancelID, ppErrors,)
HRESULT Write(dwCount, phServer, pItemValues, dwTransactionID, pdwCancelID, ppErrors);
HRESULT Cancel2 (dwCancelID);
HRESULT Refresh2(dwSource, dwTransactionID, pdwCancelID);
HRESULT SetEnable(bEnable);
HRESULT GetEnable(pbEnable);

IOPCItemMgt

HRESULT AddItems(dwCount, pItemArray, ppAddResults, ppErrors)
HRESULT ValidateItems(dwCount, pItemArray, bBlobUpdate, ppValidationResults, ppErrors)
HRESULT RemoveItems(dwCount, phServer, ppErrors)
HRESULT SetActiveState(dwCount, phServer, bActive, ppErrors)
HRESULT SetClientHandles(dwCount, phServer, phClient, ppErrors)
HRESULT SetDatatypes(dwCount, phServer, pRequestedDatatypes, ppErrors)
HRESULT CreateEnumerator(riid, ppUnk)

IConnectionPointContainer

HRESULT EnumConnectionPoints(IEnumConnectionPoints ppEnum);
HRESULT FindConnectionPoint(REFIID riid, IConnectionPoint ppCP);

 13

OPC Data Access Custom Interface Specification 2.05

IOPCAsyncIO (old)

HRESULT Read(dwConnection, dwSource, dwCount, phServer, pTransactionID, ppErrors,)
HRESULT Write(dwConnection, dwCount, phServer, pItemValues, pTransactionID, ppErrors);
HRESULT Cancel (dwTransactionID);
HRESULT Refresh(dwConnection, dwSource, pTransactionID);

IDataObject (old)

HRESULT Dadvise(pFmt, adv, pSnk, pConnection);
HRESULT Dunadvise(Connection);
Note: all other functions can be stubs which return E_NOTIMPL.

3.1.3 EnumOPCItemAttributes Object
IEnumOPCItemAttributes

HRESULT Next(celt, ppItemArray, pceltFetched);
HRESULT Skip(celt);
HRESULT Reset(void);
HRESULT Clone(ppEnumItemAttributes);

 14

OPC Data Access Custom Interface Specification 2.05

3.2 Custom Interface/Client Side

IOPCDataCallback

HRESULT OnReadComplete(dwTransid, hGroup, hrMasterquality, hrMastererror, dwCount,

 phClientItems, pvValues, pwQualities, pftTimeStamps, pErrors,);
HRESULT OnWriteComplete(dwTransid, hGroup, hrMastererr, dwCount, phClientItems,

 pErrors);
HRESULT OnCancelComplete(dwTransid, hGroup);
HRESULT OnDataChange(dwTransid, hGroup, hrMasterquality, hrMastererror, dwCount,

 phClientItems, pvValues, pwQualities, pftTimeStamps, pErrors,);

IOPCShutdown

void ShutdownRequest(szReason);

IAdviseSink (old)

void OnDataChange(pFE, pSTM);

Note: all other functions can be stubs which return E_NOTIMPL.

 15

OPC Data Access Custom Interface Specification 2.05

4 OPC Custom Interface

4.1 Overview of the OPC Custom Interface
The OPC Custom Interface Objects include the following custom objects:

• OPCServer

• OPCGroup

The interfaces and behaviors of these objects are described in detail in this chapter. Developers of
OPC servers are required to implement the OPC objects by providing the functionality defined in this
chapter.

This chapter also references and defines expected behavior for the standard OLE interfaces. Interfaces
that an OPC server and an OPC client are required to implement when building OPC compliant
components.

Also, standard and custom Enumerator objects are created, and interfaces to these objects are returned.
In general the enumerator objects and interfaces are described briefly since their behavior is well
defined by OLE.

The OPC specification follows the preferred approach that enumerators are created and returned from
methods on objects rather than through QueryInterface. The enumerators are as follows:

• Group Enumerator - (see IOPCServer::CreateGroupEnumerator)

• Item Attribute Enumerator - (see IOPCItemMgt::CreateEnumerator)

• Server Address Space Enumerator - (see IOPCBrowseServerAddressSpace::BrowseOPCItemIDs)

• AccessPath Enumerator - (see IOPCBrowseServerAddressSpace::BrowseAccessPaths)

Also you will note that in some cases lists of things are returned via enumerators and in other cases as
simple lists of items. Our choice depends on the expected number of items returned. ‘Large’ lists are
best returned through enumerators while ‘small’ lists are more easily and efficiently returned via
explicit lists.

 16

OPC Data Access Custom Interface Specification 2.05

4.2 General Information
This section provides general information about the OPC Interfaces, and some background information
about how the designers of OPC expected these interfaces to be implemented and used.

4.2.1 Version Interoperability
Data Access Servers may be compatible with the requirements of Version 1.0a of the specification or
with Version 2.0 of the specification or both. Data Access Clients may also be compatible with the
requirements of Version 1.0a of the specification or with Version 2.0 of the specification or both.

The best migration strategy for server and client vendors will depend on their particular business
situation. For example a vendor who mostly sells his own client and server components as a packaged
system and for whom OPC Compatability represents a long term strategy will have less need to
support multiple versions of the interfaces.

As a general guideline it is recommended that existing server vendors add version 2.0 support and
leave version 1.0 support in place to support existing Version 1.0 Clients.

Data Access Server

Required Interfaces

1.0 2.0

OPCServer

IUnknown Required Required

IOPCServer Required Required

IOPCCommon N/A Required

IConnectionPointContainer N/A Required

IOPCItemProperties N/A Required

IOPCServerPublicGroups Optional Optional

IOPCBrowseServerAddressSpace Optional Optional

OPCGroup

IUnknown Required Required

IOPCItemMgt Required Required

IOPCGroupStateMgt Required Required

IOPCPublicGroupStateMgt Optional Optional

IOPCSyncIO Required Required

IOPCAsyncIO2 N/A Required

IConnectionPointContainer N/A Required

IOPCAsyncIO Required N/A

IDataObject Required N/A

 17

OPC Data Access Custom Interface Specification 2.05

4.2.2 Ownership of memory
Per the COM specification, clients must free all memory associated with ‘out’ or ‘in/out’ parameters.
This includes memory that is pointed to by elements within any structures. This is very important for
client writers to understand, otherwise they will experience memory leaks that are difficult to find. See
the IDL files to determine which parameters are out parameters. The recommended approach is for a
client to create a subroutine that is used for freeing each type of structure properly.

Independent of success/failure, the server must always return well defined values for ‘out’ parameters.
Releasing the allocated resources is the client’s responsibility.

Note: If the error result is any FAILED error such as E_OUTOFMEMORY , the OPC server should
return NULL for all `out' pointers (this is standard COM behavior). This rule also applies to the error
arrays (ppErrors) returned by many of the functions below. In general, a robust OPC client should
check each out or in/out pointer for NULL prior to freeing it.

4.2.3 Standard Interfaces
Per the COM specification, all methods must be implemented on each required interface.

Per the COM specification, any optional interfaces that are supported must have all functions within
that interface implemented, even if the implementation is only a stub implementation returning
E_NOTIMPL.

4.2.4 Null Strings and Null Pointers
Both of these terms are used below. They are NOT the same thing. A NULL Pointer is an invalid
pointer (0) which will cause an exception if used. A NUL String is a valid (non zero) pointer to a 1
character array where that character is a NUL (i.e. 0). If a NUL string is returned from a method as an
[out] parameter (or as an element of a structure) it must be freed, otherwise the memory containing the
NUL will be lost. Also note that a NULL pointer cannot be passed for an [in,string] argument due to
COM marshalling restrictions. In this case a pointer to a NUL string should be passed to indicate an
omitted parameter.

4.2.5 Returned Arrays
You will note the syntax size_is(,dwCount) in the IDL used in combination with pointers to pointers.
This indicates that the returned item is a pointer to an actual array of the indicated type, rather than a
pointer to an array of pointers to items of the indicated type. This simplifies marshaling , creation, and
access of the data by the server and client.

4.2.6 Public Groups
Public groups are optional. The server vendor and the client vendor may elect to support this behavior
as appropriate for their application. There are some specific rules that must be adhered to if the public
group capability is supported. This are discussed in detail later in the method descriptions but in
general:

A public group must have a unique name relative to all other public groups. If a client adds a private
group which will later be converted to a public group, the client should insure that this name is unique
or an error will occur later in MoveToPublic.

Once a group has been made public, the items within that group can not be changed. If changes need
to be made to a public group, a new group must be created with the items (e.g. through the use of
CloneGroup), and made public after the modifications to the items are in place

Once a client has connected to a public group, most of that group’ properties (client handles, update
rates, etc) will be maintained as unique instance data for that client to group connection.

 18

OPC Data Access Custom Interface Specification 2.05

4.2.7 CACHE data, DEVICE data and TimeStamps
For the most part the terms CACHE and DEVICE are treated as ‘abstract’ within this specification.
That is, reading CACHE or DEVICE data simply affects the described behavior of various interfaces
in a well defined way. The implementation details of these capabilities is not dictated by this
specification.

In practice, however, it is expected that most servers will read data into some sort of CACHE. Also,
most clients will read data from this cache via one of several mechanisms discussed later. Access to
DEVICE data is expected to be ‘slow’ and is expected to be used primarily for diagnostics or for
particularly critical operations.

The CACHE should reflect the latest value of the data (subject to update rate and deadband
optimizations as discussed later) as well as the quality and timestamp. The Timestamp should indicate
the time that the value and quality was obtained by the device (if this is available) or the time the
server updated or validated the value and quality in its CACHE. Note that if a device or server is
checking a value every 10 seconds then the expected behavior would be that the timestamp of that
value would be updated every 10 seconds (even if the value is not actually changing). Thus the time
stamp reflects the time at which the server knew the corresponding value was accurate.

This is also true regardless of wether the physical device to system interface is exception based. For
example suppose it is known that (a) an exception based device is checking values every 0.5 second
and that (b) the connection to the device is good and (c) that device sent an update for item FIC101
three minutes ago with a value of 1.234. In this case the value returned from a cache read would be
1.234 and more important, the timestamp returned for this value would be the current time (within 0.5
second) since it is known that the value for the item is in fact still 1.234 as of 0.5 seconds ago.

4.2.8 Time Series Values
The OPC Data Access interfaces are designed primarily to take snapshots of current real time process
or automation data. The Timestamp returned with those values is intended primarily as an indication of
the quality of that ‘current’ data. These interfaces are not really intended to deal with buffered time
series data for a single point such as historical data.

4.2.9 Asynchronous vs. Synchronous Interfaces
Assuming that most clients want to access Cached data, there are several ways for a client to obtain
that data from a server.

• It can perform a synchronous read from cache (simple and reasonably efficient). This may be
appropriate for fairly simple clients that are reading relatively small amounts of data and where
maximum efficiency is not a concern. A client that operates in this way is essentially duplicating
the ‘scanning’ that the server is already doing.

• It can ‘subscribe’ to cached data using IAdviseSink or IOPCDataCallback which is more complex
but very efficient. This is the recommended behavior for clients because it will minimize use of
CPU and NETWORK resources.

4.2.10 The ACTIVE flags, Deadband and Update Rate
These attributes of groups and items can be used to reduce resource use by clients and servers. They
are discussed in more detail later under GROUPS. In general, they affect how often the cached data
and quality information is updated and how often calls are made to the client’s IAdviseSink or
IOPCDataCallback.

 19

OPC Data Access Custom Interface Specification 2.05

4.2.11 Errors and return codes
The OPC specification describes interfaces and corresponding behavior that an OPC server
implements, and an OPC client application depends on. A list of OPC Specific errors and return codes
is contained in the summary of OPC error codes section in this specification. For each method
described below a list of all possible OPC error codes as well as the most common OLE error codes is
included. It is likely that clients will encounter additional error codes such as RPC and Security related
codes in practice and they should be prepared to deal with them.

In two cases (Read and Write) it is also allowed for a server to return Vendor Specific error codes.
Such codes can be passed to GetErrorString method. This is discussed in more detail later.

In all cases ‘E’ error codes will indicate FAILED type errors and ‘S’ error codes will indicate at least
partial success.

4.2.12 Startup Issues
After Items are added to a group, it may take some time for the server to actually obtain values for
these items. In such cases the client might perform a read (from cache), or establish an AdviseSink or
ConnectionPoint based subscription and/or execute a Refresh on such a subscription before the values
are available. You will see in the later discussions of subscriptions that an initial callback is expected
which contains all values in a Group. The expected behavior in this situation is summarized by saying
that as items are added to a group, their initial state should be set to OPC_QUALITY_BAD with a
NON_SPECIFIC (00) or optionally a OPC_QUALITY_LAST_KNOWN (14) substate. Any client
operation on the group will then behave as it normally would for a group with a mixed set of GOOD
and BAD qualities. Note that in the case of the sync read and also asyncio2 operations the server can
return vendor specific error information which could indicate a vendor specific error such as
"SERVER WAITING FOR INITIAL DATA".

4.2.13 VARIANT Data Types and Interoperability
In order to promote interoperability, the following rules and recommendations are presented.

General Recommendations:

• The VARIANT types VT_I2, I4, R4, R8, CY, DATE, BSTR, BOOL, UI1 as well as single arrays
of these types (VT_ARRAY) are expected to be most commonly used (in part because these are
the legal types in Visual Basic).

• It is recommended that whenever possible, clients request data in one of these formats and that
whenever possible, servers be prepared to return data in one of these formats.

• It is expected that use of other extended types will most likely occur where the Server and Client
were written by the same vendor and the server intends to pass some non-portable vendor specific
data back to the client. In the interests of interoperability, such transactions should be minimized.

• It has been found in practice that some servers (for example those connecting to remote locations)
are unable to determine the Native Datatype at the time an item is added or validated. It has
become common practice for such servers to return VT_EMPTY as the native datatype. Such
servers will retain the requested type (which may also be VT_EMPTY) and will return the data in
the requested type (which may be ‘Native’) when the data becomes available and they are able to
determine its actual type. It is recommeneded (but not required) that clients be prepared to deal
with an initial return of VT_EMPTY from AddItems or ValidateItems.

General Rules:

• Servers are allowed to maintain and return any legal Canonical Data Type (any legal permutation
of VT_ flags) in addition to the recommended types above.

• Clients are allowed to request any legal Variant Data Type in addition to the recommended types
above.

 20

OPC Data Access Custom Interface Specification 2.05

• Servers should be prepared to deal in an elegant way with requested types even when they are
unable to convert their data to this type. That is, they should not malfunction, return incorrect
results or lose memory. As mentioned elsewhere they may return a variety of errors including any
error returned by the Microsoft function: VariantChangeType.

• Clients should always be prepared to deal with servers which are unable to handle a requested
datatype. That is, they should not malfunction or lose memory when an error is returned.

• Clients which request VT_EMPTY (which by convention indiciates that the server should return
it's canonical type) should likewise be prepared to deal with any returned type. That is, even if
they find that they are not able to use or display the returned data, they should properly free the
data (using VariantClear) and should probably indicate to the user that a datatype was returned
which is not usable by this client.

Additional Rules regarding Data Conversion

OPC Servers must support at least the following conversions between Canonical and Requested
datatypes. Reading and Writing should be symmetric. Note that the easiest way for most server
implementers to provide this functionality is to use the VariantChangeTypeEx() function available in
the COM libraries. In the table below, conversions marked OK can be expected to always work. Other
conversions may or may not work depending on the specific value of the source.

As noted elsewhere in this specification the Client can specify a localeID to be used and the server
should pass this to VariantChangeTypeEx() for all conversions. Note that it is possible for the end user
to override some of the default Locale Settings in the Control Panel Regional Settings Dialog. For
example in English it is possible to select date formats of either MM/DD/YY or YY/MM/DD as well
other formats. Clearly a date of 03/02/01 is ambiguous in this case. It is the End User’s responsibility
to insure that the Regional Settings for a given localeID are compatible on different machines within
his network.

FROM… I1 UI1 I2 UI2 I4 UI4 R4 R8 CY DATE BSTR BOOL
TO…
I1 OK OK(7) (1) (1) (1) (1) (1) (1) (1) (1)(3) (4) OK
UI1 OK(7) OK (1) (1) (1) (1) (1) (1) (1) (1)(3) (4) OK
I2 OK OK OK OK(7) (1) (1) (1) (1) (1) (1)(3) (4) OK
UI2 (1) OK OK(7) OK (1) (1) (1) (1) (1) (1)(3) (4) OK
I4 OK OK OK OK OK OK(7) (1) (1) (1) OK (4) OK
UI4 (1) OK (1) OK OK(7) OK (1) (1) (1) OK (4) OK
R4 OK OK OK OK OK OK OK (1) OK OK (4) OK
R8 OK OK OK OK OK OK OK OK OK OK (4) OK
CY OK OK OK OK OK OK (1) (1) OK OK (4) OK
DATE OK OK OK OK (1) (1) (1) (1) (1) OK (4) OK
BSTR OK OK OK OK OK OK OK OK OK OK OK OK
BOOL OK OK OK OK OK OK OK OK OK OK (4) OK

Notes:
(1) Conversion on ‘downcast’ e.g. from I4 to I2 or R8 to R4 is allowed although Overflow is possible.
If overflow occurs an error (DISP_E_OVERFLOW) is returned and in the case of Read the quality is
set to BAD. In the case of Write the target value is not changed.

(2) Note that the internal storage type of VT_BOOL is ‘short’ which must have the values
VARIANT_TRUE (0xFFFF – i.e. ‘-1’ when stored in a ‘short’) and VARIANT_FALSE (0). When
converting TO bool any non-zero value converts to VARIANT_TRUE. Converting FROM bool to any
signed numeric type, VARIANT_TRUE converts to ‘-1’ or ‘-1.0’. For unsigned types it converts to the
maximum value. The recommended OPC standard for conversion of bool to BSTR is “0” or “-1”
rather than ‘True” or “False”. If a server chooses to convert to “True” or “False” is must account for

 21

OPC Data Access Custom Interface Specification 2.05

the Locale (e.g. by passing VARIANT_LOCALBOOL to VariantChangeTypeEx). It should also be
noted that the C++ keyword ‘true’ is an abstract type which converts to ‘1’ when assigned to any other
value (e.g. to a short). Thus it is an coding error to assign ‘true’ to ‘boolVal’ which must always be set
to VARIANT_TRUE or VARIANT_FALSE.

(3) Note that DATE is stored as a double where the integer part is the date and the fraction is the time.
For the DATE, 0.0 is midnight Dec 30, 1899 (i.e. midnight Jan 1, 1900 is 2.0 and Dec 4, 2001 is
37229.0). For the TIME the fraction represents the time of day moving ahead from midnight (e.g.
0.2500 is 6:00 AM, 0.400 is 9:36:00 AM). This fraction is not affected by the sign of the date and
always moves ‘ahead’ from midnight for both positive and negative values. For example –1.4 is Dec
29, 1899 9:36:00 AM. These conversions are supported by VariantChangeTypeEx(). Generally an
OVERFLOW will occur if the TO type is UI1, I1, UI2 or I2. In addition the TIME (being a fraction)
will be lost on any conversion of DATE to an Integer.

(4) BSTR conversions will give a DISP_E_TYPE error if the string does not make sense for
conversion to the target type. For example “1234” converts to any numeric type (except it generates
OVERFLOW for UI1), “12/04/2001” converts to DATE (depending on the Locale) but not to a
numeric type and “ABCD” does not convert to any other type.

(5) Conversions from non Integers to Integers must round up according to the sign if the factional part
exceeds 0.5. For example 1.6 would round up to 2 and -1.6 would round 'up' to -2. In addition, the
generally accepted convention is that round up will occur if the fraction equals or exceeds 0.5
HOWEVER client and server writers should be aware that VariantChange does not reliably adhere to
the 'equals' part of this rule. Experience has shown that some floats and doubles with a fraction exactly
equal to .5 will round up while others will round down. For purposes of compliance either round up or
round down is acceptable when the fraction exactly equals .5.

(6) Keep in mind that Currency (CY) is stored as a scaled (fixed point x 10,000) 8 byte integer (I.e. a
‘_huge’) With 4 digits of precision to the right of the decimal point. For example $12.34 is stored as
123400.

(7) Conversion between signed and unsigned integers should generate an overflow if the requested
type cannot hold the value (e.g. I1=-1 should overflow if converted to UI1 and UI1 of 255 should
overflow if converted to I1). However some of these conversions behave improperly when performed
by ChangeVariantTypeEx. Specifically, for conversions with the same number of bits the value is
NOT checked for overflow. So an I1 of –1 turns into a UI1 of 255. Similarly a UI1 value of 254 turns
into an I1 value of –2. The same applies for I2 and I4. This is an incorrect behavior by
ChangeVariantTypeEx. Client programs and users should be aware that most servers will exhibit this
behavior since most servers will use VariantChangeTypeEx. Correcting this is recommended but is
NOT required for OPC Compliance. Conversions between types with different numbers of bits (e.g. I1,
I2, I4) are properly checked for Overflow by VariantChangeTypeEx.

(8) Loss of Precision may occur when converting between various types (e.g. converting from R8 to
R4 or from R4 to I4 or I2). However no error is reported as long as there is no OVERFLOW and
Quality is returned as GOOD for Reads.

(9) Note that ChangeVariantTypeEx does not handle arrays. Servers which support arrays must
implement conversion logic using additional code. For arrays the required behavior is that if any
element of the array suffers a conversion error then the first error detected is returned (DISP_E_OVER
or DISP_E_TYPE). For Read the Quality is set to BAD and an empty Variant is returned. For Write, if
conversion of any element fails then none of the elements are written and the first error encountered is
returned.

 22

OPC Data Access Custom Interface Specification 2.05

4.2.14 Localization and LocaleID
As mentioned elsewhere in this document, the extent to which a server supports localization is up to
the vendor. However certain issues require some discussion. Localization is important not just for error
strings and messages. It is also potentially important for values that are read or written as strings. The
formating of numbers, dates, currency, etc may all depend on the Locale. The generally expected
behavior is that the Client will query the server for the Locales it supports and will chose one to use via
SetLocaleID() or a similar function. Note that in the case of Data Access, the LocaleID of a Group can
be set to be different from the 'default' LocaleID established for the server via
IOPCComn::SetLocaleID().

The Client should expect that the server will return strings which are translated and formatted
according to the LocaleID in effect for the object (e.g. the Group) most closely associated with the
data. This includes strings that are the result of converting a VARIANT to a requested datatype.
Servers can easily use the function VariantChangeTypeEx() to accomplish this.

Similarly any Server OPC Object should expect that the Client will pass strings which are formated
according to the LocaleID the Client has told the server to use for that object. This includes BSTRs
which arrive in VARIANTs which the server will need to convert to its native data type. Again, the
server should be able to use VariantChangeTypeEx() to accomplish this.

So for example, if the client tells the server to return German formated strings when reading from a
particular object then the server can reasonably expect the client to pass German formated strings when
writing to that object.

 23

OPC Data Access Custom Interface Specification 2.05

4.3 Data Acquisition and Active State Behavior
The following tables summarize the expected behavior of OPC servers and OPC clients with respect to
the Group and Item Active flags, Reads and Subscriptions, and CACHE and DEVICE data.

The first column (Function) is the short hand notation for the external functions that an OPC client
application calls and the OPC server implements. The Source Column is the source from which the
client wants the data to be obtained (either device or cache). The Enable Column indicates the callback
enable state as set by AsyncIO2::SetEnable. The Group Column is the active state of the group.. The
Item Column is the active state of the Item. The Behavior Column is the behavior for this configuration
state.

Certain Quality values are identified in the table and reflect required behavior with respect to the active
state of groups and items. In all other cases, the server may return quality values as appropriate to
communicate the current state of the data to the client.

The information in this table is also applicable to the automation interface.

Additional Notes:

Refresh is a special case of subscription, where refresh forces an OnDataChange call for all active
items.

It is expected that most clients will use either Reads or Subscriptions for a particular group but not
both. If both are used then there is some interaction between Reads and Subscriptions in that anything
sent to the client as a result of a ‘read’ is also considered to be the ‘last value sent’.

A transition from Inactive to Active will result in a change in quality, and will cause a subscription
callback for the item or items affected. A change (in the group or item) from Active to Inactive will
cause a change in quality but will not cause a callback since by definition callbacks do not occur for
inactive items. That is, if you later do an explicit read (sync or async) of an inactive group or item you
will get a quality indicating that the item is inactive.

4.3.1 IOPCSyncIO

Interface ::Method Source Enable
Callbacks

Group
Active
State

Item
Active
State

Server Behavior

IOPCSyncIO::Read Cache NA Active Active The Values and Quality for the requested items are

returned to the client as return values from the method.
The Value and Quality are the values that the server has
in cache.

IOPCSyncIO::Read Cache NA Active InActive A Quality of OPC_QUALITY_OUT_OF_SERVICE for

the requested items is returned to the client as return
values from the method.

IOPCSyncIO::Read Cache NA InActive NA A Quality of OPC_QUALITY_OUT_OF_SERVICE for

the requested items is returned to the client as return
values from the method.

IOPCSyncIO::Read Device NA NA NA The Values and Quality for the requested items are

returned to the client as return values from the method.
The Value and Quality are the values that the server
obtains from the device when this method is called. The
cache of the server should be updated with the acquired
value and quality.

 24

OPC Data Access Custom Interface Specification 2.05

4.3.2 IOPCASyncIO2

Interface ::Method Source Enable
Callbacks

Group
Active
State

Item
Active
State

Server Behavior

IOPCAsyncIO2::Read NA NA NA NA The Values and Quality for the requested items are sent to

the client through the
IOPCDataCallback::OnReadComplete method. The
Value and Quality are the values that the server obtains
from the DEVICE when this method is called. The
CACHE of the server should be updated with the acquired
value and quality.

Interface ::Method Source Enable

Callbacks
Group
Active
State

Item
Active
State

Server Behavior

IOPCAsyncIO2::Refresh Cache NA Active Active The Values and Quality for all the Active items in the

group are sent to the client through the
IAdviseSink::OnDataChange method. The Value and
Quality are the values that the server has in cache.

IOPCAsyncIO2::Refresh Cache NA Active InActive The Values and Quality for all the InActive items in the

group are not provided to the client. If there are no
Active Items in the group then the server returns E_FAIL
as the return value from the call.

IOPCAsyncIO2::Refresh Cache NA InActive NA The server returns E_FAIL as the return value from the

call.

IOPCAsyncIO2::Refresh Device NA Active Active The Values and Quality for all items in the group are sent

to the client through the
IOPCDataCallback::OnDataChange method. The Value
and Quality are the values that the server obtains from the
device when this method is called. The cache of the
server should be updated with the acquired values and
qualities.

IOPCAsyncIO2::Refresh Device NA Active InActive The Values and Quality for all the InActive items in the

group are not provided to the client. If there are no
Active Items in the group then the server returns E_FAIL
as the return value from the call.

IOPCAsyncIO2::Refresh Device NA InActive NA The server returns E_FAIL as the return value from the

call.

 25

OPC Data Access Custom Interface Specification 2.05

4.3.3 SUBSCRIPTION via IOPCDataCallback
OnDataChange

Interface ::Method Source Enable
Callbacks

Group
Active
State

Item
Active
State

Server Behavior

Subscription via
IOPCDataCallback::
OnDataChange

NA TRUE Active Active The Value and Quality are the values that the server
obtains from the device at a periodic rate sufficient to
accommodate the specified UpdateRate. If the Quality has
changed from the Quality last sent to the client, then the
new value and new quality will be sent to the client
through the IOPCDataCallback::OnDataChange method,
and the cache of the server should be updated with the
acquired value and quality. If the Quality has NOT
changed from the Quality last sent to the client, the
server should compare the acquired value for a change
that exceeds the Deadband criteria. If the change in value
exceeds the deadband criteria, , then the new value and
new quality will be sent to the client through the
IOPCDataCallback::OnDataChange method, and the
cache of the server should be updated with the acquired
value and quality.

Subscription via
IOPCDataCallback::
OnDataChange

 TRUE Active InActive Server only acquires values from physical data sources for
active items.

Subscription via
IOPCDataCallback::
OnDataChange

 TRUE InActive NA Server only acquires values from physical data sources for
active items that are contained in active groups.

Subscription via
IOPCDataCallback::
OnDataChange

NA FALSE Active Active The Value and Quality are the values that the server
obtains from the device at a periodic rate sufficient to
accommodate the specified UpdateRate. If the Quality has
changed from the Quality in the cache, then the cache of
the server should be updated with the acquired value and
quality. If the Quality has changed from the Quality in
the cache, the server should compare the acquired value
for a change that exceeds the Deadband criteria. If the
change in value exceeds the deadband criteria, , then the
cache of the server should be updated with the acquired
value and quality.

Subscription via
IOPCDataCallback::
OnDataChange

NA FALSE Active InActive Server only acquires values from physical data sources for
active items.

Subscription via
IOPCDataCallback::
OnDataChange

NA FALSE InActive NA Server only acquires values from physical data sources for
active items that are contained in active groups.

 26

OPC Data Access Custom Interface Specification 2.05

4.3.4 IOPCASyncIO (old)

Interface ::Method Source Enable
Callbacks

Group
Active
State

Item
Active
State

Server Behavior

IOPCAsyncIO::Read Cache NA Active Active The Values and Quality for the requested items are sent to

the client through the IAdviseSink::OnDataChange
method. The Value and Quality are the values that the
server has in cache.

IOPCAsyncIO::Read Cache NA Active InActive A Quality of OPC_QUALITY_OUT_OF_SERVICE for

the requested items is sent to the client through the
IAdviseSink::OnDataChange method.

IOPCAsyncIO::Read Cache NA InActive NA A Quality of OPC_QUALITY_OUT_OF_SERVICE for

the requested items is sent to the client through the
IAdviseSink::OnDataChange method.

IOPCAsyncIO::Read Device NA NA NA The Values and Quality for the requested items are sent to

the client through the IAdviseSink::OnDataChange
method. The Value and Quality are the values that the
server obtains from the device when this method is called.
The cache of the server should be updated with the
acquired value and quality.

Interface ::Method Source Enable

Callbacks
Group
Active
State

Item
Active
State

Server Behavior

IOPCAsyncIO::Refresh Cache NA Active Active The Values and Quality for all the Active items in the

group are sent to the client through the
IAdviseSink::OnDataChange method. The Value and
Quality are the values that the server has in cache.

IOPCAsyncIO::Refresh Cache NA Active InActive The Values and Quality for all the InActive items in the

group are not provided to the client. If there are no
Active Items in the group then the server returns E_FAIL
as the return value from the call.

IOPCAsyncIO::Refresh Cache NA InActive NA The server returns E_FAIL as the return value from the

call.

IOPCAsyncIO::Refresh Device NA Active Active The Values and Quality for all items in the group are sent

to the client through the IAdviseSink::OnDataChange
method. The Value and Quality are the values that the
server obtains from the device when this method is called.
The cache of the server should be updated with the
acquired values and qualities..

IOPCAsyncIO::Refresh Device NA Active InActive The Values and Quality for all the InActive items in the

group are not provided to the client. If there are no
Active Items in the group then the server returns E_FAIL
as the return value from the call.

IOPCAsyncIO::Refresh Device NA InActive NA The server returns E_FAIL as the return value from the

call.

 27

OPC Data Access Custom Interface Specification 2.05

4.3.5 SUBSCRIPTION via IDataObject (old)

Interface ::Method Source Enable
Callbacks

Group
Active
State

Item
Active
State

Server Behavior

Subscription via
(IDataObject::DAdvise) &
(IAdviseSink::OnDataCha
nge)

NA NA Active Active The Value and Quality are the values that the server
obtains from the device at a periodic rate sufficient to
accommodate the specified UpdateRate. If the Quality has
changed from the Quality last sent to the client, then the
new value and new quality will be sent to the client
through the IAdviseSink::OnDataChange method, and the
cache of the server should be updated with the acquired
value and quality. If the Quality has NOT changed from
the Quality last sent to the client, the server should
compare the acquired value for a change that exceeds the
Deadband criteria. If the change in value exceeds the
deadband criteria, , then the new value and new quality
will be sent to the client through the
IAdviseSink::OnDataChange method, and the cache of
the server should be updated with the acquired value and
quality.

Subscription via
(IDataObject::DAdvise) &
(IAdviseSink::OnDataCha
nge)

NA NA Active InActive Server only acquires values from physical data sources for
active items.

Subscription via
(IDataObject::DAdvise) &
(IAdviseSink::OnDataCha
nge)

NA NA InActive NA Server only acquires values from physical data sources for
active items that are contained in active groups.

 28

OPC Data Access Custom Interface Specification 2.05

4.4 OPCServer Object

4.4.1 Overview
The OPCServer object is the primary object that an OPC server exposes. The interfaces that this object
provides include:

• IUnknown

• IOPCServer

• IOPCServerPublicGroups (optional)

• IOPCBrowseServerAddressSpace (optional)

• IPersistFile (optional)

• IOPCItemProperties

• IConnectionPointContainer

The functionality provided by each of the above interfaces is defined in this section.

NOTE: Version 1.0 of this specification listed IEnumUnkown as an interface on the OPC Server. This
was an error and has been removed. The semantics of QueryInterface do not allow such an
implementation. The proper way to obtain a group enumerator is through
IOPCServer::CreateGroupEnumerator.

 29

OPC Data Access Custom Interface Specification 2.05

4.4.2 IUnknown
The server must provide a standard IUnknown Interface. Since this is a well defined interface it is not
discussed in detail. See the OLE Programmer’s reference for additional information. This interface
must be provided, and all functions implemented as required by Microsoft..

4.4.3 IOPCCommon
Other OPC Servers such as alarms and events share this interface design. It provides the ability to set
and query a LocaleID which would be in effect for the particular client/server session. That is, as with
a Group definition, the actions of one client do not affect any other clients.

A quick reference for this interface is provided below. A more detailed discussion can be found in the
OPC Overview Document.

HRESULT SetLocaleID (
 [in] LCID dwLcid
);

HRESULT GetLocaleID (
 [out] LCID *pdwLcid
);

HRESULT QueryAvailableLocaleIDs (
 [out] DWORD *pdwCount,
 [out, sizeis(, *pdwCount)] LCID **ppdwLcid
);

HRESULT GetErrorString(
 [in] HRESULT dwError,
 [out, string] LPWSTR *ppString
);

HRESULT SetClientName (
 [in, string] LPCWSTR szName
);

 30

OPC Data Access Custom Interface Specification 2.05

4.4.4 IOPCServer
This is the main interface to an OPC server. The OPC server is registered with the operating system as
specified in the Installation and Registration Chapter of this specification.

This interface must be provided, and all functions implemented as specified.

4.4.4.1 IOPCServer::AddGroup

HRESULT AddGroup(
 [in, string] LPCWSTR szName,
 [in] BOOL bActive,
 [in] DWORD dwRequestedUpdateRate,
 [in] OPCHANDLE hClientGroup,
 [unique, in] LONG *pTimeBias,
 [in] FLOAT * pPercentDeadband,
 [in] DWORD dwLCID,
 [out] OPCHANDLE * phServerGroup,
 [out] DWORD *pRevisedUpdateRate,
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk
);

Description

Add a Group to a Server.

Parameters Description

szName Name of the group. The name must be unique among the
other groups created by this client. If no name is provided
(szName is pointer to a NUL string) the server will generate
a unique name. The server generated name will also be
unique relative to any existing public groups.

bActive FALSE if the Group is to be created as inactive.
TRUE if the Group is to be created as active.

dwRequestedUpdateRate Client Specifies the fastest rate at which data changes may
be sent to OnDataChange for items in this group. This also
indicates the desired accuracy of Cached Data. This is
intended only to control the behavior of the interface. How
the server deals with the update rate and how often it
actually polls the hardware internally is an implementation
detail. Passing 0 indicates the server should use the fastest
practical rate. The rate is specified in milliseconds.

hClientGroup Client provided handle for this group. [refer to description of
data types, parameters, and structures for more information
about this parameter]

pTimeBias Pointer to Long containing the initial TimeBias (in minutes)
for the Group. Pass a NULL Pointer if you wish the group to
use the default system TimeBias. See discussion of

 31

OPC Data Access Custom Interface Specification 2.05

TimeBias in General Properties Section See Comments
below.

pPercentDeadband The percent change in an item value that will cause a
subscription callback for that value to a client. This
parameter only applies to items in the group that have
dwEUType of Analog. [See discussion of Percent Deadband
in General Properties Section]. A NULL pointer is
equivalent to 0.0.

dwLCID The language to be used by the server when returning values
(including EU enumeration’s) as text for operations on this
group. This could also include such things as alarm or status
conditions or digital contact states.

phServerGroup Place to store the unique server generated handle to the
newly created group. The client will use the server provided
handle for many of the subsequent functions that the client
requests the server to perform on the group.

pRevisedUpdateRate The server returns the value it will actually use for the
UpdateRate which may differ from the
RequestedUpdateRate.
Note that this may also be slower than the rate at which the
server is internally obtaining the data and updating the cache.
In general the server should ‘round up’ the requested rate to
the next available supported rate. The rate is specified in
milliseconds. Server returns HRESULT of
OPC_S_UNSUPPORTEDRATE when it returns a value in
revisedUpdateRate that is different than
RequestedUpdateRate.

riid The type of interface desired (e.g. IID_IOPCItemMgt)
ppUnk Where to store the returned interface pointer. NULL is

returned for any FAILED HRESULT.

Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was
invalid.

OPC_E_DUPLICATENAME Duplicate name not allowed.

OPC_S_UNSUPPORTEDRATE Server does not support specified rate,
server returns the rate that it can
support in the revised update rate.

E_NOINTERFACE The interface(riid) asked for is not
supported by the server.

Behavior

A Group is a logical container for a client to organize and manipulate data items.

 32

OPC Data Access Custom Interface Specification 2.05

The server will create a group object, and return a pointer to the interface requested by the client. If
the client requests an optional interface that the server does not support, the server is expected to
return an error indicating the interface is not supported.

The requested update rate / revised update rate behavior should be deterministic between client / server
sessions. The client expects that for the same server configuration or workspace; adding a group with
a requested update rate will always result in the same RevisedRate independent of the number of
clients or items that have been added.

Comments

The expected object lifetime behavior is as follows. Even if all the interfaces are released, the group
will not be deleted until RemoveGroup is called. One way for the server to implement this is to assign
the group an initial reference count of 2; one for the ‘Add’ and one for the Interface that was created.
However, clients should not make assumptions about the Group’s reference count.

The client should not call RemoveGroup without releasing all interfaces for the group. The client
should also not release the server without removing all private groups.

Since the server is the ‘container’ for the groups it is permissible for the server to forcibly remove any
remaining groups at the time all of the server interfaces are released. (This should not be necessary for
a well behaved client).

See also the CreateGroupEnumerator function.

The level of localization supported (dwLCID) is entirely server specific. Servers which do not support
dynamic localization can ignore this parameter.

See the MoveToPublic function for additional requirements related to public groups.

 33

OPC Data Access Custom Interface Specification 2.05

4.4.4.2 IOPCServer::GetErrorString
HRESULT GetErrorString(
 [in] HRESULT dwError,
 [in] LCID dwLocale,
 [out, string] LPWSTR *ppString
);

Description

Returns the error string for a server specific error code.

Parameters Description

dwError A server specific error code that the client application had
returned from an interface function from the server, and for
which the client application is requesting the server’s textual
representation.

dwLocale The locale for the returned string .
ppString Pointer to pointer where server supplied result will be saved

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid. (For
example, the error code specified is not valid.)

S_OK The operation succeeded.

Comments

This is essentially the same function as is found in the newer IOPCCommon.

Note that if this method is called on a remote server, an RPC error may result. For this reason it is
probably good practice for the client to attempt to call a local Win32 function if this function fails.

The expected behavior is that this will include handling of Win32 errors as well (such as RPC errors).

The Client must free the returned string.

It is recommended that the server put any OPC specific strings into an external resource to simplify
translation.

To get the default value for the system, the dwLocale should be LOCALE_SYSTEM_DEFAULT.

 34

OPC Data Access Custom Interface Specification 2.05

4.4.4.3 IOPCServer::GetGroupByName
HRESULT GetGroupByName(
 [in, string] LPCWSTR szName,
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk
);

Description

Given the name of a private group (created earlier by the same client), return an additional interface
pointer. Use GetPublicGroupByName to attach to public groups.

Parameters Description

szName The name of the group. That is the group must have been
created by the caller.

riid The type of interface desired for the group (e.g.
IOPCItemMgt)

ppUnk Pointer to where the group interface pointer should be
returned. NULL is returned for any HRESULT other than
S_OK.

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

E_NOINTERFACE The interface(riid) asked for is not
supported by the server.

Comments

This function can be used to reconnect to a private group for which all interface pointers have been
released.

The client must release the returned interface when it is done with it.

If needed, the client can obtain the hServerGroup Handle via IOPCGroupStateMgt::GetState.

 35

OPC Data Access Custom Interface Specification 2.05

4.4.4.4 IOPCServer::GetStatus
HRESULT GetStatus(
 [out] OPCSERVERSTATUS ** ppServerStatus
);

Description

Returns current status information for the server.

Parameters Description

ppServerStatus Pointer to where the OPCSERVERSTATUS structure pointer
should be returned. The structure is allocated by the server.

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

Comments

The OPCSERVERSTATUS is described later in this specification.

Client must free the structure as well as the VendorInfo string within the structure.

Periodic calls to GetStatus would be a good way for the client to determine that the server is still
connected and available.

 36

OPC Data Access Custom Interface Specification 2.05

4.4.4.5 IOPCServer::RemoveGroup
HRESULT RemoveGroup(
 [in] OPCHANDLE hServerGroup,
 [in] BOOL bForce

);

Description

Deletes the Group

Parameters Description

hServerGroup Handle for the group to be removed
bForce Forces deletion of the group even if references are

outstanding

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

OPC_S_INUSE Was not be removed because references exist.
Group will be marked as deleted, and will be
removed automatically by the server when all
references to this object are released.

Comments

A group is not deleted when all the client interfaces are released, since the server itself maintains a
reference to the group. The client may still call GetGroupByName after all the interfaces have been
released. RemoveGroup() causes the server to release it's `last' reference to the group, which results in
the group being truly deleted.

In general, a well behaved client will call this function only after releasing all interfaces.

If interfaces still exist, Remove group will mark the group as ‘deleted’. Any further calls to this group
via these interfaces will return E_FAIL. When all the interfaces are released, the group will actually be
deleted. If bForce is TRUE then the group is deleted unconditionally even if references (interfaces)
still exist. Subsequent use of such interfaces will result in an access violation.

This function should not be called for Public Groups.

 37

OPC Data Access Custom Interface Specification 2.05

4.4.4.6 IOPCServer::CreateGroupEnumerator
HRESULT CreateGroupEnumerator(

[in] OPCENUMSCOPE dwScope,
[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN* ppUnk
);

Description

Create various enumerators for the groups provided by the Server.

Parameters Description

dwScope Indicates the class of groups to be enumerated
OPC_ENUM_PRIVATE_CONNECTIONS or
OPC_ENUM_PRIVATE enumerates all of the private
groups created by the client
OPC_ENUM_PUBLIC_CONNECTIONS or
OPC_ENUM_PUBLIC enumerates all of the public
groups available in the server
OPC_ENUM_ALL_CONNECTIONS or
OPC_ENUM_ALL enumerates all private groups and
all public groups

riid The interface requested. This must be
IID_IEnumUnknown or IID_IEnumString.

ppUnk Where to return the interface. NULL is returned for
any HRESULT other than S_OK or S_FALSE.

NOTE: Version 1.0 of this specification described slightly different behavior for enumerating connected vs
non-connected groups. However this behavior has been found to be difficult or impossible to implement in
practice. The description here represents a simplification of this behavior. It is recommended that use of
OPC_ENUM_PRIVATE_CONNECTIONS, OPC_ENUM_PUBLIC_CONNECTIONS,
OPC_ENUM_ALL_CONNECTIONS be avoided by clients.

 38

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

S_FALSE There is nothing to enumerate (there are no groups
which satisfy the request). However an empty
Enumerator is still returned and must be released. Note:
In previous versions of the spec there has been some
ambiguity about the behavior in the case of S_FALSE.
For this reason, it is recommended that when
S_FALSE is returned by the server, clients test the
returned interface pointer for NULL prior to calling
Release on it.

E_NOINTERFACE The interface(riid) asked for is not supported by the
server.

Comments

Connected means an interface pointer exists.

Servers which do not support public groups will simply behave as if they had no public groups. That is
they will NOT return E_INVALIDARG if the scope includes public groups.

IEnumUnknown creates an additional interface pointer to each group in the enumeration (even if the
client already has a connection to the group). If the server has a large number of public groups
available then this may involve considerable overhead as well as requiring additional cleanup by the
client. In general, enumerating groups by name will be much faster.

In the case of IEnumUnknown (per the COM specification) the client must also release all of the
returned IUnknown pointers when he is done with them.

 39

OPC Data Access Custom Interface Specification 2.05

4.4.5 IConnectionPointContainer (on OPCServer)
This interface provides access to the connection point for IOPCShutdown.

The general principles of ConnectionPoints are not discussed here as they are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with this technology. OPC 2.0
Compliant Servers are REQUIRED to support this interface.

Likewise the details of the IEnumConnectionPoints, IConnectionPoint and IEnumConnections
interfaces are well defined by Microsoft and are not discussed here.

Note: OPC Compliant servers are not required to support more than one connection between each
Server and the Client. Given that servers are client specific entities it is expected that a single
connection will be sufficient for virtually all applications. For this reason (as per the COM
Specification) the EnumConnections method for IConnectionPoint interface for the IOPCShutdown is
allowed to return E_NOTIMPL.

 40

OPC Data Access Custom Interface Specification 2.05

4.4.5.1 IConnectionPointContainer::EnumConnectionPoints
HRESULT EnumConnectionPoints(
 IEnumConnectionPoints **ppEnum
);

Description

Create an enumerator for the Connection Points supported between the OPC Group and the Client.

Parameters Description

ppEnum Where to save the pointer to the connection point
enumerator. See the Microsoft documentation for a
discussion of IEnumConnectionPoints.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCServers must return an enumerator that includes IOPCShutdown. Additional vendor specific
callbacks are also allowed.

 41

OPC Data Access Custom Interface Specification 2.05

4.4.5.2 IConnectionPointContainer:: FindConnectionPoint
HRESULT FindConnectionPoint(
 REFIID riid,
 IConnectionPoint **ppCP

);

Description

Find a particular connection point between the OPC Server and the Client.

Parameters Description

ppCP Where to store the Connection Point. See the Microsoft
documentation for a discussion of IConnectionPoint.

riid The IID of the Connection Point. (e.g.
IID_IOPCShutdown)

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCServers must support IID_IOPCShutdown. Additional vendor specific callbacks are also allowed.

 42

OPC Data Access Custom Interface Specification 2.05

4.4.6 IOPCItemProperties
Overview

This interface can be used by clients to browse the available properties (also refered to as attributes or
parameters) associated with an ITEMID and to read the current values of these properties. In some
respects the functionality is similar to that provided by BrowseServerAddressSpace, by
EnumItemAttributes and by the SyncIO Read function. It differs from these interfaces in two important
respects; (a) it is intended be much easier to use and (b) it is not optimized for efficient access to large
amounts of data. Rather it is intended to allow an application to easily browse and read small amounts
of additional information specific to a particular ITEMID.

The design of this interface is based upon the assumption is that many ITEMIDs are associated with
other ITEMIDs which represent related values such as Engineering Units range or Description or
perhaps Alarm Status. For example the system might be built internally of 'records' which represent
complex objects (like PID Controllers, Timers, Counters, Analog Inputs, etc). These record items
would have properties (like current value, setpoint, hi alarm limit, low alarm limit, description, etc).

As a result, this interface allows a flexible and convenient way to browse, locate and read this related
information without imposing any particular design structure on the underlying system.

It also allows such information to be read without the need to create and manage OPCGroups.

In most cases, a system like the one above (i.e. one composed internally of 'records') would also
expose a hierarchical address space to OPC in the form of A100 as a 'branch' and A100.CV, A100.SP,
A100.OUT, A100.DESC as 'leafs'. In other words, the properties of an item which happens to be a
record will generally map into lower level ITEMIDS. Another way to look at this is that things that
have properties like A100 are going to be things that show up as 'Branch' Nodes in the OPC Browser
and things that are properties are going to show up as 'Leaf' nodes in the OPC Browser.

Note that the A100 item could in fact be embedded in a higher level "Plant.Building.Line" hierarchy
however for the moment we will ignore this as it is not relevant to this discussion.

So, the general intent of this interface is to provide a way, given an ITEMID of any one of a number of
related its properties (like A100.CV or A100.DESC or even A100), to identify the other related
properties.

Before we begin however it should be noted that the first 6 properties (the OPC Specific Property Set
1) are 'special cases' in that they represent data that would exist within the OPC Server if this item were
added to an OPC Group and do not represent properties of the 'real' tag record in the underlying
system. As a result, these particular property IDs will generally behave differently in the methods on
this interface as described below.

An overview of the QueryAvailableProperties function:

The expected use of this is that you would pass it an ITEMID such as A100 which represents a 'record'
object although you can also pass it a fully qualified ITEMID such as A100.CV or A100.SP. In any
case you will get back a list of all of the other properties related to this item; typically, these are the
other properties of the record object. Except for properties 1-6 it is not relevant whether the starting
ITEMID reflects the record object or one of its property objects. Either way you will get back the same
result - i.e. the list of properties in the containing 'record' object.

As noted above properties 1-6 have special behavior. They will refer to the OPC Item Data within the
server for this particular item. If the passed ITEMID would not have made sense when passed to
AddItem then the special 1-6 properties will not be available. For example if adding A100 (rather than
A100.CV) would produce an error from AddItem then properties 1-6 are not available for A100.

 43

OPC Data Access Custom Interface Specification 2.05

Note that a server could chose to assign a 'default' value to an unqualified tag such that for example
A100 becomes equivalent to A100.CV. Such a server might chose to return properties 1-6 when passed
an unqualified ITEMID such as A100..

An overview of the GetItemProperties function:

The expected use is that you would pass the same ITEMID to this function as you passed to
QueryAvailableProperties since, logically, the Property ID list returned by QueryAvailableProperties is
valid only for exactly that ITEMID. Again note that except for properties 1-6 it does not matter
whether the ITEMID is A100, A100.CV or A100.DESC, the properties will still return the appropriate
properties of the container record.

Properties 1-6 have special behavior in that their behavior does vary based on the ITEMID. For
example, property 2 (Current Value) would return the value of A100.CV if that were the passed
ITEMID or the value or A100.SP if that were the passed ITEMID or might be invalid if the passed
ITEMID were simply A100.

An overview of the LookupItemIDs function:

The expected use is that you would pass the same ITEMID to this function as you passed to
QueryAvailableProperties since, logically, the Property ID list returned by QueryAvailableProperties is
valid only for exactly that ITEMID. Again note that except in the case of properties 1-6 it does not
matter whether the ITEMID is A100, A100.CV or A100.DESC, the returned ITEMIDs will still reflect
the ITEMIDs of the appropriate properties of the container record.

Because properties 1-6 reflect data stored within the server and are not really related to properties of
the item, there will never be any ITEMIDs returned for these properties and they should never be
passed to this function. Doing so will generate an OPC_E_INVALID_PID error for the passed
property.

Typical Use

Typical Client use of this interface would be to obtain an ITEMID either by obtaining a 'LEAF' via
BrowseServerAddress or via direct input to an edit box by the user. That ITEMID would be passed to
QueryAvailableProperties(). The resulting list would be presented to the user. He would select the
properties he wanted to see from the list. The client would pass this set to GetItemProperties () to get a
'snapshot' of the data. Optionally the client could pass the set to LookupItemIDs and use the resulting
set of ITEMIDs to create an OPCGroup to be used to repeatedly obtain the data.

Examples

This is just an example. It is not intended to impose any particular structure on any server
implementation.

A typical OPC ITEMID might be FIC101.CV. This could represent the current value of a tag or
function block called FIC101. This function block commonly has other properties associated with it
such as Engineering Units, a loop description, etc. This function block could also have alarm limits and
status, a setpoint, tuning parameters as well as documentation cross references, maintenance
information, help screens, default operator displays and a limitless set of other properties. All of these
properties are associated with each other by virtue of their common association with FIC101. This
interface provides a convenient shortcut to accessing those related properties.

An MMI package for example might use this interface to allow the user to indicate that the Hi and Lo
Engineering Units values should be used to scale a bargraph representation of the value.

 44

OPC Data Access Custom Interface Specification 2.05

Note that because these associations can be 'many to many' and can also be circular, a client
application would not want to automatically investigate them all.

It is NOT intended that property browsing be hierarchical.

Another similar example could be a function block such as a TIMER or COUNTER in a high end PLC
where various Properties are associated with each object.

How ‘Properties’ relate to ItemIDs.

In most cases it is expected (but not required) that such properties can also be accessed via ItemIDs
such as FIC101.HI_EU, FIC101.DESC, FIC101.ALMSTAT, etc. These related ITEMIDs could be
used in an OPCGroup. This interface provides a way to easily determine if such an alternate method of
access can be used for the properties if large amounts of information need to be obtained more
efficiently.

Property IDs

The server will need to assign DWORD ID codes to the properties. This allows the client to more
easily manage the list of properties it wants to access. These properties are divided (somewhat
arbitrarily) into 3 ‘sets’. The OPC ‘Fixed’ set contains properties that are identical to some of those
returned by OPCITEMATTRIBUTES, the ‘recommended’ set is expected to be common to many
servers, the ‘vendor specific’ set contains additional properties as appropriate. The assigned IDs for the
first two sets are fixed. The vendor specific properties should use ID codes above 5000.

The OPC Property Sets

This is a set of property IDs that are common to many servers. Servers which provide the coresponding
properties must do so using the ID codes from this list. Symbolic equates for these properties are
provided in the OPCProps.H file. (See Appendix to this document).

ID Set 1 - OPC Specific Properties - This includes information directly related to the OPC Server for
the system.

 45

OPC Data Access Custom Interface Specification 2.05

ID DATATYPE of
returned
VARIANT

STANDARD DESCIPTION

1 VT_I2 "Item Canonical DataType"

(VARTYPE stored in an I2)

2 <varies> "Item Value"

(VARIANT)

Note the type of value returned is as indicated by the "Item Canonical
DataType" above and depends on the item. This will behave like a
read from DEVICE.

3 VT_I2 "Item Quality"

(OPCQUALITY stored in an I2). This will behave like a read from
DEVICE.

4 VT_DATE "Item Timestamp"

(will be converted from FILETIME). This will behave like a read from
DEVICE.

5 VT_I4 "Item Access Rights"

(OPCACCESSRIGHTS stored in an I4)

6 VT_R4 "Server Scan Rate"

In Milliseconds. This represents the fastest rate at which the server
could obtain data from the underlying data source. The nature of this
source is not defined but is typically a DCS system, a SCADA system,
a PLC via a COMM port or network, a Device Network, etc. This
value generally represents the ‘best case’ fastest RequestedUpdateRate
which could be used if this item were added to an OPCGroup.

The accuracy of this value (the ability of the server to attain ‘best case’
performance) can be greatly affected by system load and other factors.

7-99 Reserved for future OPC use

ID Set 2 - Recommended Properties - This is additional information which is commonly associated
with ITEMs. This includes additional ranges of values that are reserved for use by other future OPC
specifications. For information about the newest field ID assignments, consult the other OPC
Foundation specifications.

The position of the OPC Foundation is that if you have properties associated with an item which seem
to fit the descriptions below then it is recommended that you use these specific descriptions and ID
codes to expose those properties via this interface.

A server can provide any subset of these values (or none of them).

ID DATATYPE of
returned
VARIANT

STANDARD DESCIPTION

 Properties related to the Item Value.

100 VT_BSTR "EU Units"

 46

OPC Data Access Custom Interface Specification 2.05

e.g. “DEGC” or “GALLONS”

101 VT_BSTR "Item Description"

e.g. “Evaporator 6 Coolant Temp”

102 VT_R8 "High EU"

Present only for ‘analog’ data. This represents the highest value likely
to be obtained in normal operation and is intended for such use as
automatically scaling a bargraph display.

e.g. 1400.0

103 VT_R8 "Low EU"

Present only for ‘analog’ data. This represents the lowest value likely
to be obtained in normal operation and is intended for such use as
automatically scaling a bargraph display.

e.g. -200.0

104 VT_R8 "High Instrument Range"

Present only for ‘analog’ data. This represents the highest value that
can be returned by the instrument.

e.g. 9999.9

105 VT_R8 "Low Instrument Range"

Present only for ‘analog’ data. This represents the lowest value that
can be returned by the instrument.

e.g. -9999.9

106 VT_BSTR "Contact Close Label"

Present only for ‘discrete' data. This represents a string to be
associated with this contact when it is in the closed (non-zero) state

e.g. "RUN", "CLOSE", "ENABLE", "SAFE" ,etc.

107 VT_BSTR "Contact Open Label"

Present only for ‘discrete' data. This represents a string to be
associated with this contact when it is in the open (zero) state

e.g. "STOP", "OPEN", "DISABLE", "UNSAFE" ,etc.

108 VT_I4 "Item Timezone" The difference in minutes between the items UTC
Timestamp and the local time in which the item value was obtained.
See the OPCGroup TimeBias property. Also see the WIN32
TIME_ZONE_INFORMATION structure.

109-199 Reserved for future OPC use. Additional IDs may be added without
revising the interface ID.

 Properties related operator displays

200 VT_BSTR "Default Display"

The name of an operator display associated with this ItemID

201 VT_I4 "Current Foreground Color"

 47

OPC Data Access Custom Interface Specification 2.05

The COLORREF in which the item should be displayed

202 VT_I4 "Current Background Color"

The COLORREF in which the item should be displayed

203 VT_BOOL "Current Blink"

Should a display of this item blink?

204 VT_BSTR "BMP File"

e.g. C:\MEDIA\FIC101.BMP

205 VT_BSTR "Sound File"

e.g. C:\MEDIA\FIC101.WAV, or .MID

206 VT_BSTR "HTML File"

e.g. http:\\mypage.com/FIC101.HML

207 VT_BSTR "AVI File"

e.g. C:\MEDIA\FIC101.AVI

207-299 Reserved for future OPC use. Additional IDs may be added without
revising the interface ID.

 Properties Related to Alarm and Condition Values
(preliminary)…

IDs 300 to 399 are reserved for use by OPC Alarms and Events.

See the OPC Alarm and Events specification for additional
information.

300 VT_BSTR "Condition Status"

The current alarm or condition status associated with the Item

e.g. "NORMAL", "ACTIVE", "HI ALARM", etc

301 VT_BSTR "Alarm Quick Help"

A short text string providing a brief set of instructions for the operator
to follow when this alarm occurs.

302 VT_BSTR

|VT_ARRAY

"Alarm Area List"

An array of stings indicating the plant or alarm areas which include
this ItemID.

303 VT_BSTR "Primary Alarm Area"

A string indicating the primary plant or alarm area including this
ItemID

304 VT_BSTR "Condition Logic"

An arbitrary string describing the test being performed.

e.g. "High Limit Exceeded" or "TAG.PV >= TAG.HILIM"

305 VT_BSTR "Limit Exceeded"

For multistate alarms, the condition exceeded

 48

OPC Data Access Custom Interface Specification 2.05

e.g. HIHI, HI, LO, LOLO

306 VT_R8 "Deadband"

307 VT_R8 "HiHi Limit"

308 VT_R8 "Hi Limit"

309 VT_R8 "Lo Limit"

310 VT_R8 "LoLo Limit"

311 VT_R8 "Rate of Change Limit"

312 VT_R8 "Deviation Limit"

313-399 Reserved for future OPC Alarms and Events use. Additional IDs may
be added without revising the interface ID.

400-
4999

 Reserved for future OPC use. Additional IDs may be added without
revising the interface ID.

NOTE the OPC Foundation reserves the right to expand this list from time to time. Clients
should be prepared to deal with this.

ID Set 3 - Vendor specific Properties

5000… VT_xxx Vendor Specific Properties. ID codes for these properties must have
values of 5000 or greater. They do not need to be sequential. The
datatypes must be compatable with the VARIANT.

The client should take care dealing with these vendor specific IDs - i.e. not make assumptions about
them. Different vendors may not provide the same information for IDs of 5000 and above.

Note again that this interface is NOT intended to allow efficient access to large amounts of data.

The LocaleID of the server (as set by IOPCCommon::SetLocaleID) will be used by the server to
localize any data items returned as strings. The item descriptions are not localized.

 49

OPC Data Access Custom Interface Specification 2.05

4.4.6.1 IOPCItemProperties::QueryAvailableProperties
HRESULT QueryAvailableProperties(
[in] LPWSTR szItemID,
[out] DWORD * pdwCount,
[out, size_is(,*pdwCount)] DWORD **ppPropertyIDs,
[out, size_is(,*pdwCount)] LPWSTR *ppDescriptions,
[out, size_is(,*pdwCount)] VARTYPE **ppvtDataTypes
);

Description

Return a list of ID codes and descriptions for the available properties for this ITEMID. This list may
differ for different ItemIDs. This list is expected to be relatively stable for a particular ItemID. That is,
it could be affected from time to time by changes to the underlying system’s configuration.

Parameters Description

szItemID The ItemID for which the caller wants to know the
available properties

pdwCount The number of properties returned
ppPropertyIDs DWORD IDs for the returned properties. These IDs

can be passed to GetItemProperties or LookupItemIDs
ppDescriptions A brief vendor supplied text description of each

property. NOTE LocaleID does not apply to
Descriptions. They are from the tables above.

ppvtDataTypes The datatype which will be returned for this property
by GetItemProperties.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
OPC_E_UNKNOWNI
TEMID

The ItemID is not in the server address space

OPC_E_INVALIDITE
MID

The ItemID is not syntactically valid

E_OUTOFMEMORY Not enough Memory.
E_INVALIDARG An invalid argument was passed
E_FAIL The function failed.

Comments

The ItemID is passed to this function because servers are allowed to return different sets of properties
for different ItemIDs.

 50

OPC Data Access Custom Interface Specification 2.05

4.4.6.2 IOPCItemProperties::GetItemProperties
HRESULT GetItemProperties(
[in] LPWSTR szItemID,
[in] DWORD dwCount,
[in, size_is(dwCount)] DWORD * pdwPropertyIDs,
[out, size_is(,dwCount)] VARIANT ** ppvData,
[out, size_is(,dwCount)] HRESULT **ppErrors
);

Description

Return a list of the current data values for the passed ID codes.

Parameters Description

szItemID The ItemID for which the caller wants to read the list
of properties.

dwCount The number of properties passed
ppPropertyIDs DWORD IDs for the requested properties. These IDs

were returned by QueryAvailableProperties or obtained
from the fixed list described earlier.

ppvData An array of count VARIANTS returned by the server
which contain the current values of the requested
properties.

ppErrors Error array indicating wether each property was
returned.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The operation completed with one or more errors.

Refer to individual error returns for failure analysis.

OPC_E_UNKNOWNI
TEMID

The ItemID is not in the server address space

OPC_E_INVALIDITE
MID

The ItemID is not syntactically valid

E_OUTOFMEMORY Not enough Memory.
E_INVALIDARG An invalid argument was passed
E_FAIL The function failed.

 51

OPC Data Access Custom Interface Specification 2.05

‘Errors’ Return Codes

Return Code Description
S_OK The corresponding PropertyID was read.
OPC_E_INVALID_PI
D

The passed Property ID is not defined for this item.

E_xxx The passed Property ID could not be read. The server
can return a server specific error code to provide a
detailed explanation as to why this property could not
be read. This error code can be passed to
GetErrorMessage. In general this will be the same set
of errors as is returned by the OPC Read function.

Comments

The caller must Free the returned Variants and Errors array. The client must first do a VariantClear()
on each of the returned Variants.

Clients should not use this interface to obtain large amounts of data. Clearly each server vendor will
provide the best performace possible however as a practical matter it is expected that the design of this
interface will make it difficult for the server to optimize performace. See LookupItemIDs.

 52

OPC Data Access Custom Interface Specification 2.05

4.4.6.3 IOPCItemProperties::LookupItemIDs
HRESULT LookupItemIDs(
[in] LPWSTR szItemID,
[in] DWORD dwCount,
[in, size_is(dwCount)] DWORD *pdwPropertyIDs,
[out, string, size_is(,dwCount)] LPWSTR ** ppszNewItemIDs,
[out, size_is(,dwCount)] HRESULT **ppErrors
);

Description

Return a list of ITEMIDs (if available) for each of the passed ID codes. These indicate the ITEMID
which could be added to an OPCGroup and used for more efficient access to the data corresponding to
the Item Properties.

Parameters Description

szItemID The ItemID for which the caller wants to lookup the
list of properties

dwCount The number of properties passed
pdwPropertyIDs DWORDIDs for the requested properties. These IDs

were returned by QueryAvailableProperties
ppszNewItemIDs The returned list of ItemIDs.
ppErrors Error array indicating wether each New ItemID was

returned.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The operation completed with one or more errors.

Refer to individual error returns for failure analysis.

OPC_E_UNKNOWNI
TEMID

The ItemID is not in the server address space

OPC_E_INVALIDITE
MID

The ItemID is not syntactically valid

E_OUTOFMEMORY Not enough Memory.
E_INVALIDARG An invalid argument was passed
E_FAIL The function was not successful

 53

OPC Data Access Custom Interface Specification 2.05

‘Errors’ Return Codes

Return Code Description
S_OK The corresponding Property ID was translated into an

ItemID.
OPC_E_INVALID_PI
D

The passed Property ID is not defined for this item.

E_FAIL The passed Property ID could not be translated into an
ItemID.

Comments

It is expected and recommended that servers will allow most or all item properties to be translated into
specific ItemIDs.

The caller must Free the returned NewItemIDs and Errors array.

 54

OPC Data Access Custom Interface Specification 2.05

4.4.7 IOPCServerPublicGroups (optional)
This optional interface allows management of public groups.

Public Groups

An application may be designed so that the same groups of data items are used by many clients. In
those cases the optional Public Group capability of the server provides a convenient mechanism for
both clients and servers to share these groups.

Public groups may be created by the server or they may be created by a client. When created by the
client, they are first created as private groups and then converted to public groups by MoveToPublic.

A client can enumerate the available public groups by name using
IOPCServer::CreateGroupEnumerator. He can ‘connect’ to a public group by calling
GetPublicGroupByName. He can examine the contents of the group via IEnumOPCItemAttributes. He
can assign client handles and datatypes that are meaningful for the particular client using various
IOPCItemMgt functions.

Once a client connects to a Public group, it behaves very much like a private group. He can activate
and deactivate the group or items in the group. He can set client handles for the group and items within
the group. He can set requested data type for the items in the group. All of these operations affect only
that particular client. They do not affect the behavior of other clients connected to that group. The
exception to this behavior is that he cannot add or remove items.

 55

OPC Data Access Custom Interface Specification 2.05

4.4.7.1 IOPCServerPublicGroups:: GetPublicGroupByName
HRESULT GetPublicGroupByName(

 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk

Description

Parameters Description

 [in, string] LPCWSTR szName,

);

‘Connects’ the client to a public group. This returns an interface pointer to the group.

szName
riid requested interface
ppUnk pointer to place to store interface. NULL is returned for

any HRESULT other than S_OK

Name of group to be connected

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

E_NOINTERFACE The interface(riid) asked for is not supported by the
server.

OPC_E_NOTFOUND Requested Public Group was not found.

Comments

If needed, the client can obtain the hServerGroup Handle via IOPCGroupStateMgt::GetState.

Note that when the client’s last interface for the public group is released, the client is effectively
disconnected from the group. At this point the server should release any resources or instance data
associated with this particular client’s connection to the public group. It is not necessary for the client
to call RemoveGroup or RemovePublicGroup to free these client specific resources.

 56

OPC Data Access Custom Interface Specification 2.05

4.4.7.2 IOPCServerPublicGroups:: RemovePublicGroup
HRESULT RemovePublicGroup(
 [in] OPCHANDLE hServerGroup ,
 [in] BOOL bForce
);

Description

Delete a public group.

Parameters Description

hServerGroup Handle of group to be removed.
bForce Forces deletion of the group even if references are

outstanding

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

OPC_S_INUSE Was not be removed because references exist. Group
will be marked as deleted, and will be removed by the
server when all references to this object are released.

Comments

A public group is not deleted when all the client interfaces are released, since the server itself
maintains a reference to the group. The client may still call GetPublicGroupByName after all the
interfaces have been released. RemovePublicGroup() causes the server to release it's `last' reference to
the group, which results in the group being truly deleted.

It is permissible for a server to publish ‘hard coded’ groups which cannot be deleted. The server should
return E_FAIL in this case.

In general, a well behaved client will call this function only after releasing all interfaces.

If interfaces still exist, RemovePublicGroup will mark the group as ‘deleted’. Any further calls to this
group via these interfaces will return E_FAIL. When all the interfaces are released, the group will
actually be deleted. If bForce is TRUE then the group is deleted unconditionally even if references
(interfaces) still exist. Subsequent use of such interfaces will result in an access violation.

Note that any client can delete a public group. You can get the server handle of the group by calling
IOPCGroupStateMgt::GetState.

 57

OPC Data Access Custom Interface Specification 2.05

4.4.8 IOPCBrowseServerAddressSpace (optional)
This interface provides a way for clients to browse the available data items in the server, giving the
user a list of the valid definitions for an ITEM ID. It allows for either flat or hierarchical address
spaces and is designed to work well over a network. It also insulates the client from the syntax of a
server vendor specific ITEM ID.

NOTE: Version 1.0A of the specification stated that each instance of this interface was a separate
object (like an enumerator), which would have allowed multiple independent browse sessions by the
same client on the server address space. This turns out to be in violation of the rules of COM and as a
result it does not work in combination with DCOM. In practice, this interface MUST be implemented
(like any other interface) as a separate interface on the single underlying Data Access Object. The text
of this section has been modified to reflect this. Note that the 'footprint' of the interface is unchanged
for 2.0.

Note that the Data Access Server object maintains state information related to browsing (i.e. the
current position in the address hierarchy) on behalf of the client using this interface. Since there is just
one underlying Server object, there is just a single copy of this state information. Therefore the client
CANNOT create a separate and independent browser object by doing a second QueryInterface for
IOPCBrowseServerAddressSpace. (Doing this would simply give him a second copy of the original
interface). If a second, independent browser object is required by a client, the client would need to
create a second OPC Data Access Object and perform a QueryInterface for
IOPCBrowseServerAddressSpace on that object.

It is assumed that the underlying server address space is either flat or hierarchical. A flat space will
always be presented to the client as Flat. A hierarchical space can be presented to the client as either
flat or hierarchical.

A hierarchical presentation of the server address space would behave much like a file system, where
the directories are the branches or paths, and the files represent the leaves or items. For example, a
server could present a control system by showing all the control networks, then all of the devices on a
selected network, and then all of the classes of data within a device, then all of the data items of that
class. A further breakdown into vendor specific ‘Units’ and ‘Lines’ might be appropriate for a
BATCH system.

The browse position is initially set to the ‘root’ of the address space. The client can optionally choose a
starting point within a hierarchical space by calling ChangeBrowsePosition using
OPC_BROWSE_TO. For a FLAT space this is ignored. For a HIERARCHICAL space you may pass
any partial path (or a pointer to a NUL string to indicate the root). This sets an initial position from
which you can browse up or down.

The Client can browse the items below (contained in) the current position via BrowseOPCItemIDs. For
a hierarchical space you can specify BRANCH (which returns things on that level with children) or
LEAF (things on that level without children)- or FLAT (everything including children of children).
This gives you back a String enumerator.

This browse can also be filtered by a vendor specific filter string, by datatype, or by Access Rights.

In a hierarchy, the enumerator will return ‘short’ strings; the name of the ‘child’. These short strings
will generally not be sufficient for AddItem. The client should always convert this short string to a
’fully qualified’ string via GetItemID. For example the short string might be TIC101; the fully
qualified string might be AREA1.REACTOR5.TIC101. Note that the Server fills in any needed
delimiters.

This ItemID can optionally be passed to BrowseAccessPaths to get a list of valid access paths to this
item. (this returns another string enumerator).

If the client browsed for BRANCHs (things with children) then he can pass the result (short string) to
ChangeBrowsePosition to move ‘down’. This method can also move ‘up’ in which case the short
string is not used.

 58

OPC Data Access Custom Interface Specification 2.05

Examples of a Hierarchical Space:

Example 1

<ROOT>

 AREA1 (branch)

 REACTOR10 (branch)

 TIC1001 (branch)

 CURRENT_VALUE (leaf)

 SETPOINT

 ALARM_STATUS

 LOOP_DESCIPTION

 TIC1002

 CURRENT_VALUE

 etc…

 REACTOR11

 etc…

 AREA2

 etc…

Example 2

<ROOT>

PLC_STATION_1 (branch)

 ANALOG_VALUES (branch)

 40001 (leaf)

 40002

etc…

 59

OPC Data Access Custom Interface Specification 2.05

4.4.8.1 IOPCBrowseServerAddressSpace:: QueryOrganization
HRESULT QueryOrganization(

 [out] OPCNAMESPACETYPE * pNameSpaceType
);

Description

Provides a way to determine if the underlying system is inherently flat or hierarchical and how the
server may represent the information of the address space to the client.

Parameters Description

pNameSpaceType Place to put OPCNAMESPACE result which will be
OPC_NS_HIERARCHIAL or OPC_NS_FLAT

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

Comments

FLAT and HIERARCHICAL spaces behave somewhat different. If the result is ‘FLAT’ then the
client knows that there is no need to pass the BRANCH or LEAF flags to BrowseOPCItemIDs or to
call ChangeBrowsePosition

 60

OPC Data Access Custom Interface Specification 2.05

4.4.8.2 IOPCBrowseServerAddressSpace:: ChangeBrowsePosition
HRESULT ChangeBrowsePosition(
 [in] OPCBROWSEDIRECTION dwBrowseDirection,
 [in, string] LPCWSTR szString
);

Description

Provides a way to move ‘up’ or ‘down’ or 'to' in a hierarchical space.

Parameters Description

dwBrowseDirection OPC_BROWSE_UP or OPC_BROWSE_DOWN or
OPC_BROWSE_TO.

szString For DOWN, the name of the branch to move into. This
would be one of the strings returned from
BrowseOPCItemIDs.
E.g. REACTOR10
For UP this parameter is ignored and should point to a
NUL string.
For TO a fully qualified name (e.g. as returned from
GetItemID) or a pointer to a NUL string to go to the
'root'.
E.g. AREA1.REACTOR10.TIC1001

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

Comments

The function will return E_FAIL if called for a FLAT space.

An error is returned if the passed string does not represent a ‘branch’.

Moving UP from the ‘root’ will return E_FAIL.

Note OPC_BROWSE_TO is new for version 2.0. Clients should be prepared to handle
E_INVALIDARG if they pass this to a 1.0 server.

 61

OPC Data Access Custom Interface Specification 2.05

4.4.8.3 IOPCBrowseServerAddressSpace:: BrowseOPCItemIDs

HRESULT BrowseOPCItemIDs(
 [in] OPCBROWSETYPE dwBrowseFilterType,
 [in, string] LPCWSTR szFilterCriteria,
 [in] VARTYPE vtDataTypeFilter,
 [in] DWORD dwAccessRightsFilter,
 [out] LPENUMSTRING * ppIEnumString
);

Description

Returns an IENUMString for a list of ItemIDs as determined by the passed parameters. The position
from the which the browse is done can be set via ChangeBrowsePosition.

Parameters Description

dwBrowseFilterType OPC_BRANCH - returns only items that have children
OPC_LEAF - returns only items that don’t have children
OPC_FLAT - returns everything at and below this level
including all children of children - basically ‘pretends’ that
the address space in actually FLAT
This parameter is ignored for FLAT address space.

szFilterCriteria A server specific filter string. This is entirely free format
and may be entered by the user via an EDIT field.
Although the valid criteria are vendor specific, source code
for a recommended filter function is included in an
Apppendix at the end of this document. This particular filter
function is commonly used by OPC interfaces and is very
similar in functionality to the LIKE function in visual basic.
A pointer to a NUL string indicates no filtering.

vtDataTypeFilter Filter the returned list based in the available datatypes
(those that would succeed if passed to AddItem).
VT_EMPTY indicates no filtering.

dwAccessRightsFilter Filter based on the AccessRights bit mask
(OPC_READABLE or OPC_WRITEABLE). The bits
passed in the bitmask are 'ANDed' with the bits that would
be returned for this Item by AddItem, ValidateItem or
EnumOPCItemAttributes. If the result is non-zero then the
item is returned. A 0 value in the bitmask indicates that the
AccessRights bits should be ignored during the filtering
process..

ppIEnumString Where to save the returned interface pointer. NULL if the
HRESULT is other than S_OK or S_FALSE

 62

OPC Data Access Custom Interface Specification 2.05

Return Codes

Return Code Description

S_OK The operation succeeded.

S_FALSE There is nothing to enumerate. However an empty
Enumerator is still returned and must be released.
Note: In previous versions of the spec there has
been some ambiguity about the behavior in the
case of S_FALSE. For this reason, it is
recommended that when S_FALSE is returned by
the server, clients test the returned interface
pointer for NULL prior to calling Release on it.

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

OPC_E_INVALIDFILTER The filter string was not valid

Comments

The returned enumerator may have nothing to enumerate if no ItemIDs satisfied the filter constraints.
The strings returned by the enumerator represent the BRANCHs and LEAFS contained in the current
level. They do NOT include any delimiters or ‘parent’ names. (See GetItemID).

Whenever possible the server should return strings which can be passed directly to AddItems.
However, it is allowed for the Server to return a ‘hint’ string rather than an actual legal Item ID. For
example a PLC with 32000 registers could return a single string of “0 to 31999” rather than return
32,000 individual strings from the enumerator. For this reason (as well as the fact that browser support
is optional) clients should always be prepared to allow manual entry of ITEM ID strings. In the case of
‘hint’ strings, there is no indication given as to whether the returned string will be acceptable by
AddItem or ValidateItem

Clients are allowed to get and hold Enumerators for more than one ‘browse position’ at a time.

Changing the browse position will not affect any String Enumerator the client already has.

The client must Release each Enumerator when he is done with it.

 63

OPC Data Access Custom Interface Specification 2.05

4.4.8.4 IOPCBrowseServerAddressSpace:: GetItemID
HRESULT GetItemID(
 [in] LPCWSTR szItemDataID,
 [out, string] LPWSTR * szItemID
);

Description

Provides a way to assemble a ‘fully qualified’ ITEM ID in a hierarchical space. This is required since
the browsing functions return only the components or tokens which make up an ITEMID and do NOT
return the delimiters used to separate those tokens. Also, at each point one is browsing just the names
‘below’ the current node (e.g. the ‘units’ in a ‘cell’).

Parameters Description

szItemDataID The name of a BRANCH or LEAF at the current level.
or a pointer to a NUL string. Passing in a NUL string
results in a return string which represents the current
position in the hierarchy.

szItemID Where to return the resulting ItemID.

Return Codes

Return Code Description
E_FAIL The function failed
E_INVALIDARG An argument to the function was invalid. (e.g. the

passed ItemDataID was invalid)
E_INVALIDARG An argument to the function was invalid.
E_OUTOFMEMORY Not enough memory
S_OK The function was successful

Comments

A client would browse down from AREA1 to REACTOR10 to TIC1001 to CURRENT_VALUE. As
noted earlier the client sees only the components, not the delimiters which are likely to be very server
specific. The function rebuilds the fully qualified name including the vendor specific delimiters for use
by ADDITEMs. An extreme example might be a server that returns:
 \\AREA1:REACTOR10.TIC1001[CURRENT_VALUE]

It is also possible that a server could support hierarchical browsing of an address space that contains
globally unique tags. For example in the case above, the tag TIC1001.CURRENT_VALUE might still
be globally unique and might therefore be acceptable to AddItem. However the expected behavior is
that (a) GetItemID will always return the fully qualified name
(AREA1.REACTOR10.TIC1001.CURRENT_VALUE) and that (b) that the server will always accept
the fully qualified name in AddItems (even if it does not require it).

This function does not need to be called for a FLAT space. If it is called, then the server must return
the same string that was passed in.

It is valid to form an ItemID that represents a BRANCH (e.g. AREA1.REACTOR10). This could
happen if you pass a BRANCH (AREA1) rather than a LEAF (CURRENT_VALUE). The resulting
string might fail if passed to AddItem but could be passed to ChangeBrowsePosition using
OPC_BROWSE_TO.

The client must free the returned string.

 64

OPC Data Access Custom Interface Specification 2.05

ItemID is the unique ‘key’ to the data, it is considered the ‘what’ or ‘where’ that allows the server to
connect to the data source.

 65

OPC Data Access Custom Interface Specification 2.05

4.4.8.5 IOPCBrowseServerAddressSpace:: BrowseAccessPaths
HRESULT BrowseAccessPaths(
 [in, string] LPCWSTR szItemID,
 [out] LPENUMSTRING * ppIEnumString
);

Description

Provides a way to browse the available AccessPaths for an ITEM ID.

Parameters Description

szItemID Fully Qualified ItemID
ppIEnumString Where to save the returned string enumerator. NULL if

the HRESULT is other than S_OK or S_FALSE.

Return Codes

Return Code Description
E_FAIL The function failed
E_INVALIDARG An argument to the function was invalid.
S_FALSE There is nothing to enumerate. However an empty

Enumerator is still returned and must be released. Note:
In previous versions of the spec there has been some
ambiguity about the behavior in the case of S_FALSE.
For this reason, it is recommended that when S_FALSE
is returned by the server, clients test the returned
interface pointer for NULL prior to calling Release on it.

E_OUTOFMEMORY Not enough memory
E_NOTIMPL The server does not require or support access paths.
S_OK The function was successful

Comments

Clients are allowed to get Access Path Enumerators for more than one item at a time.

Changing the browse position will not affect any enumerator the client already has.

The client must Release each Enumerator when he is done with it.

AccessPath is the “how” for the server to get the data specified by the itemID (the what). The client
uses this function to identify the possible access paths for the specified itemID.

 66

OPC Data Access Custom Interface Specification 2.05

4.4.9 IPersistFile (optional)
This is a standard implementation of the IPersistFile Interface. The descriptions below are brief and
describe behavior specific to OPC. Refer to the OLE programmers reference for additional
information.

This optional interface allows Clients to load or save a server ‘configuration’. The reason for
providing this interface is to allow a client application to have access to any ‘hooks’ it might need to
get the system started or to change the system configuration without requiring the user to start a
separate program.

The filename discussed below tells the server where it’s configuration information is located. Filename
syntax and semantics is server specific, and may include the fully qualified path and file name, or may
refer to a proprietary database where the server’s configuration is stored. The format and content of the
file or database is server specific.

Note that this interface does NOT save any client specific information such as group and
item definitions. Rather, it is a ‘hook’ intended to load or save the server configuration
such as a SCADA or DCS database, communications baud rates, PLC station addresses,
etc.

4.4.9.1 IPersistFile::IsDirty
HRESULT IsDirty(
 void
);

Description

Returns whether or not there have been any configuration changes (by any client) since the last save
operation.

Parameters

Return Codes

Return Code Description
S_OK The server has configuration information that has been modified since

the last save operation.
S_FALSE The server does not have configuration information that has been

modified since the last save operation.

Comments

The client cannot change any of the configuration of the server address space through a standard OPC
interface. The client uses this function to determine if the configuration has been modified by a server
specific configuration tool or by a client using a server specific configuration interface. This function
could be used by the client before shutting the server down to determine if the server’s configuration
needs to be saved.

 67

OPC Data Access Custom Interface Specification 2.05

4.4.9.2 IPersistFile::Load

HRESULT Load(
 [in] LPCOLESTR pszFileName,
 [in] DWORD dwMode
);

Description

Instructs the server to load the server’s configuration data from the file (pszFileName). The previous
configuration (if any) is replaced by the new configuration. OPC servers are assumed to support a
single (global) active configuration. That is, a load will affect all other OPC clients which are
accessing this server.

The exact effect of doing a load while groups and subscriptions are active is server specific. In
general, it is assumed that this will cause some or all of the items in the active groups to disappear
from the server address space. Such items would subsequently return a BAD Quality.

Parameters Description

pszFileName The filename from which the server configuration information is to be
loaded.

dwMode Access mode to be used on the file. See ‘Storage Access Mode Flags”
in the OLE programmer’s reference for more information.

Return Codes

Return Code Description
S_OK The server successfully loaded configuration information

from the file specified.
E_FAIL The server was unsuccessful in loading the configuration

information from the file specified.
E_OUTOFMEMORY Not enough memory to load configuration.
OPC_E_INVALIDCONFIGFILE The server's configuration file is an invalid format.

Comments

In most cases, an error during load will leave the server without a valid configuration.

A load will cause other clients connected to this server to be effectively disconnected, or the results of
the other clients subsequent interactions with the server to be unknown.

4.4.9.3 IPersistFile::Save

HRESULT Save(
 [in, unique] LPCOLESTR pszFileName,
 [in] BOOL fRemember
);

 68

OPC Data Access Custom Interface Specification 2.05

Description

Save current configuration.

Parameters

Parameters Description

pszFileName The filename to which the server configuration information is to be
saved.

fRemember Determines of the logically associated filename for this configuration
should be changed (if TRUE) or not (if FALSE).

Return Codes

Return Code Description
S_OK The server successfully saved configuration information
E_FAIL The server was unsuccessful in saving the configuration
OPC_E_INVALIDCONFIGFILE The server's configuration file is an invalid format.

Comments

Save should clear the server’s configuration dirty flag (as returned from IsDirty interface).

4.4.9.4 IPersistFile::SaveCompleted

HRESULT SaveCompleted(
 [in, unique] LPCOLESTR pszFileName
);

Description

This function may be implemented as a ‘stub’.

Parameters Description

pszFileName The filename to which the configuration was previously saved using
IPersistFile::Save

Return Codes

Return Code Description
S_OK S_OK is always returned
OPC_E_INVALIDCONFIGFILE The server's configuration file is an invalid format.

Comments

 69

OPC Data Access Custom Interface Specification 2.05

4.4.9.5 IPersistFile::GetCurFile

HRESULT GetCurFile(
 [out] LPOLESTR *ppszFileName
);

Description

Instructs the server to return the name associated with the currently loaded configuration.

Parameters Description

ppszFileName The full filename (if any).

Return Codes

Return Code Description
S_OK The operation succeeded
S_FALSE There is not filename currently associated with the configuration
E_OUTOFMEMORY Not enough memory
E_FAIL operation failed

Comments

This may or may not match the last name passed to Load or Save since there can be other vendor
specific tasks that control the server configuration.

The client must free the returned string.

 70

OPC Data Access Custom Interface Specification 2.05

4.5 OPCGroup Object
The OPCGroup object is the object that an OPC server delivers to manage a collection of items. The
interfaces that this object provides include:

• IUnknown
• IOPCGroupStateMgt
• IOPCPublicGroupStateMgt
• IOPCItemMgt
• IOPCSyncIO
• IOPCAsyncIO2 (new)
• IConnectionPointContainer (new)
• IOPCAsyncIO (old)
• IDataObject (old)

The functionality provided by each of these interfaces is defined in this section.

This section also identifies the interfaces required to be implemented to support the OLE mechanism
for delivering a COM interface.

 71

OPC Data Access Custom Interface Specification 2.05

4.5.1 General Properties
The OPCGroup has certain general properties and behaviors which affect the operation of the
Interfaces and Methods. These are discussed here in order to minimize duplication.

4.5.1.1 Name
Each group has a name. For private groups the name must be unique among the other private groups
that belong to that client. For public groups the name must be unique among all of the public groups.
While a client can change the name of a private group, the name of a public group cannot be changed.

A private Group and a public group may have the same name as long as the client is not connected to
the public group with the same name.

Group names are Case Sensitive. Group1 would be different from group1.

4.5.1.2 Cached data
The methods below allow the client to specify that some operations can be performed on ‘CACHE’ or
‘DEVICE’. It is expected that most servers will implement some sort of CACHE. As discussed earlier
these terms are simply part of the interface definition. The way the functions described below behave
differs slightly based on which source is specified. The actual details of the implementation of this
functionality is up to the server vendor. In most cases, access to CACHE data is expected to be ‘fast’
while access to the ‘DEVICE is expected to be ‘slow’ but more accurate. CACHE data is affected by
the Active state of the group and the items in the group while DEVICE data is not. Note again that
although we sometimes make suggestions, this specification does not dictate any particular
implementation or performance.

4.5.1.3 Active
Groups and Items within Groups have an Active Flag. The active state of the group is maintained
separately from the active state of the items. Changing the state of the group does not change the state
of the items.

For the most part the Active flag is treated as ‘abstract’ within this specification. The state of these
flags affects the described behavior of various interfaces in a well defined way. The implementation
details of these capabilities is not dictated by this specification.

In practice it is expected that most servers will make use of this flag to optimize their use of
communications and CPU resources. Items and Groups which are not active do not need to be
maintained in the CACHE.

It is also expected that clients will simply set and clear active flags of groups and items as a more
efficient alternative to adding and removing entire groups and items. For example if an operator
display is minimized, its items might be set to inactive.

Refer to the Data Acquisition and Active State Behavior summary earlier in this document for a
quick overview of the behavior of a client and server with respect to the active state of a group
and items.

 OnDataChange within the client's address space can be called whenever any active item data in a
active group changes, where “change” is defined as a change in value (from the last value sent to this
client), or a change in the Quality of the value. The server can return values and quality flags for those
items within the group that changed.(this will be discussed more in later sections)

 72

OPC Data Access Custom Interface Specification 2.05

4.5.1.4 Update Rate
The client can specify an ‘update rate’ for each group. This determines the time between when the
exception limit is checked. If the exception limit is exceeded, the CACHE is updated. The server
should make a ‘best effort’ to keep the data fresh. This also affects the maximum rate at which
notifications will be sent to the IAdvise sink. The server should never send data to a client at a rate
faster than the client requests.

IMPORTANT:

Note that this is NOT necessarily related to the server's underlying processing rate. For example if a
device is performing PID control at 0.05 second rate the an MMI requests updates at a 5 second rate
via OPC, the device would of course continue to control at a 0.05 second rate.

In addition, the server implementation would also be allowed to update the cached data available to
sync or async read at a higher rate than 5 seconds if it wished to do so. All the update rate indicates is
that (a) callbacks should happen no faster than this and (b) the cache should be updated at at least this
rate.

The update rate is a ‘request’ from the client. The server should respond with an update rate that is as
close as possible to that requested.

4.5.1.5 Time Zone (TimeBias)
In some cases the data may have been collected by a device operating in a time zone other than that of
the client. Then it will be useful to know what the time of the device was at the time the data was
collected (e.g. to determine what ‘shift’ was on duty at the time).

This time zone information may rarely be used and the device providing the data may not know its
local time zone, therefore it was not prudent to add this overhead to all data transactions. Instead, the
OPCGroup provides a place to store a time zone which can be set and read by the client. The default
value for this is the time zone of the host computer. The OPCServer will not make use of this value. It
is there only for the convenience of the client.

The purpose of the TimeBias is to indicate the timezone in which the data was collected (which may
occasionally be different from the timezone in which either the client or server is running). The default
TimeBias for the group (if a NULL pointer is passed to AddGroup) will be that of the system in which
the group is created (i.e. the server). This bias behaves like the Bias field in the Win32
TIME_ZONE_INFORMATION structure which is to say it does NOT account for daylight savings
time (DST). The TimeBias is never changed 'behind the scenes' by the server. It is set ONLY when the
group is created or when SetState is called. In general a Client computes the data's 'local' time by
TimeStamp + TimeBias + DSTBias (if any). There is an implicit assumption in this design that the
DST characteristics at the data site are the same as at the client site. If this is not the case, the client
will need to use some other means to compute the data's local time.

4.5.1.6 Percent Deadband
The range of the Deadband is from 0.0 to 100.0 Percent. Deadband will only apply to items in the
group that have a dwEUType of Analog available. If the dwEUType is Analog, then the EU Low and
EU High values for the item can be used to calculate the range for the item. This range will be
multiplied with the Deadband to generate an exception limit. An exception is determined as follows:

Exception if (absolute value of (last cached value - current value) > (pPercentDeadband/100/0) * (EU
High - EU Low))

If the exception limit is exceeded, then the last cached value is updated with the new value and a
notification will be sent to the IAdviseSink (if any). The pPercentDeadband is an optional behavior for

 73

OPC Data Access Custom Interface Specification 2.05

the server. If the client does not specify this value on a server that does support the behavior, the
default value of 0 (zero) will be assumed, and all value changes will update the CACHE. Note that the
timestamp will be updated regardless of wether the cached value is updated. A server which does not
support deadband should return an error (INVALID_PARAMETER) if the client requests a deadband
other than 0.0.

The UpdateRate for a group determines time between when a value is checked to see if the exception
limit has been exceeded. The PercentDeadband is used to keep noisy signals from updating the client
unnecessarily.

4.5.1.7 ClientHandle
This handle will be returned in the data stream to IAdviseSink. This allows the client to identify the
group to which the data packet belongs.

It is expected that a client will assign unique value to the client handle if it intends to use any of the
asynchronous functions of the OPC interfaces, including IOPCAsyncIO, IOPCAsyncIOs, and
IDataObject/IAdviseSink or IConnectionPoint/IOPCDataCallback interfaces.

4.5.1.8 Reading and Writing Data
There are basically three ways to get data into a client (ignoring the 'old' IDataObject/IAdviseSink).

• IOPCSyncIO::Read (from cache or device)

• IOPCAsyncIO2::Read (from device)

• IOPCCallback::OnDataChange() (exception based) which can also be triggered by
IOPCAsyncIO2::Refresh.

In general the three methods operate independently without ‘side effects’ on each other.

There are two ways to write data out:

• IOPCSyncIO::Write

• IOPCAsyncIO2::AsyncWrite

4.5.1.9 Public Groups
It is required that the server track each client's group properties (update rate, deadband, active status,
timezone, lcid) for a public group. For example, if two clients with different LCIDs want data from a
public group, they can change the state of the group to reflect their LCID and the server must keep
track of both.

 74

OPC Data Access Custom Interface Specification 2.05

4.5.2 IOPCItemMgt
IOPCItemMgt allows a client to add, remove and control the behavior of items is a group.

4.5.2.1 IOPCItemMgt::AddItems
HRESULT AddItems(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCITEMDEF * pItemArray,
 [out, size_is(,dwCount)] OPCITEMRESULT ** ppAddResults,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Add one or more items to a group.

Parameters Description

dwCount The number of items to be added
pItemArray Array of OPCITEMDEFs. These tell the server

everything it needs to know about the item including
the access path, definition and requested datatype

ppAddResults Array of OPCITEMRESULTs. This tells the client
additional information about the item including the
server assigned item handle and the canonical datatype.

ppErrors Array of HRESULTs. This tells the client which of the
items was successfully added. For any item which
failed it provides a reason.

 75

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid. (e.g
dwCount=0).

S_OK The operation succeeded.

S_FALSE The operation completed with one or more errors.
Refer to individual error returns for failure analysis.

OPC_E_PUBLIC Cannot add items to a public group

ppErrors Return Codes

Return Code Description
S_OK The function was successful for this item.
OPC_E_INVALIDITEMID The ItemID is not syntactically valid
OPC_E_UNKNOWNITEMID The ItemID is not in the server address

space
OPC_E_BADTYPE The requested data type cannot be returned

for this item (See comment)
E_FAIL The function was unsuccessful.
OPC_E_UNKNOWNPATH The item's access path is not known to the

server.

Comments

It is acceptable to add the same item to the group more than once. This will generate a 2nd item with a
unique ServerHandle.

Any FAILED code in ppErrors indicates that the corresponding item was NOT added to the group and
that the corresponding OPCITEMRESULT will not contain useful information.

As an alternative to OPC_E_BADTPYE it is acceptable for the server to return any FAILED error
returned by VariantChangeType or VariantChangeTypeEx.

The server provided item handle will be unique within the group, but may not be unique across groups.
The server is allowed to ‘reuse’ the handles of deleted items.

Items cannot be added to public groups.

The client needs to free all of the memory associated with the OPCITEMRESULTs including the
BLOB.

If the server supports the BLOB it will return an updated BLOB in the OPCITEMRESULTs. This
BLOB may differ in both content and size from the one passed by the client in OPCITEMDEF.

Note that if an Advise is active, the client will begin receiving callbacks for active items. This can
occur very quickly, perhaps even before the client has time to process the returned results. The client
must be designed to deal with this. One simple solution is for the client to clear the Active state of the
group while doing AddItems and to restore it after the AddItems is completed and the results are
processed.

 76

OPC Data Access Custom Interface Specification 2.05

4.5.2.2 IOPCItemMgt::ValidateItems
HRESULT ValidateItems(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCITEMDEF * pItemArray,
 [in] BOOL bBlobUpdate,
 [out, size_is(,dwCount)] OPCITEMRESULT ** ppValidationResults,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Determines if an item is valid (could it be added without error). Also returns information about the
item such as canonical datatype. Does not affect the group in any way.

Parameters Description

dwCount The number of items to be validated
pItemArray Array of OPCITEMDEFs. These tell the server

everything it needs to know about the item including
the access path, definition and requested datatype

bBlobUpdate If non-zero (and the server supports Blobs) the server
should return updated Blobs in OPCITEMRESULTs. If
zero (False) the server will not return Blobs in
OPCITEMRESULTs.

ppValidationResults Array of OPCITEMRESULTs. This tells the client
additional information about the item including the
canonical datatype.

ppErrors Array of HRESULTs. This tells the client which of the
items was successfully validated. For any item which
failed it provides a reason.

HRESULT Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid (e.g
dwCount=0).

S_OK The operation succeeded.

S_FALSE The operation completed with one or more errors.
Refer to individual error returns for failure analysis.

 77

OPC Data Access Custom Interface Specification 2.05

ppErrors Codes

Return Code Description
S_OK The function was successful for this item.
OPC_E_INVALIDITEMID The ItemID is not syntactically valid
OPC_E_UNKNOWNITEMID The ItemID is not in the server address

space
OPC_E_BADTYPE The requested data type cannot be returned

for this item (See comment)
E_FAIL The function was unsuccessful for this

item.
OPC_E_UNKNOWNPATH The item's access path is not known to the

server.

Comments

The client needs to free all of the memory associated with the OPCITEMRESULTs including the
BLOB.

As an alternative to OPC_E_BADTPYE it is acceptable for the server to return any FAILED error
returned by VariantChangeType or VariantChangeTypeEx.

 78

OPC Data Access Custom Interface Specification 2.05

4.5.2.3 IOPCItemMgt::RemoveItems
HRESULT RemoveItems(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Removes (deletes) items from a group. Basically this is the reverse of AddItems.

Parameters Description

dwCount Number of items to be removed
phServer Array of server items handles. These were returned

from AddItem.
ppErrors Array of HRESULTs. Indicates which items were

successfully removed.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function completed with one or more errors. See

the ppErrors to determine what happened
E_FAIL The function was unsuccessful.
E_INVALIDARG An argument to the function was invalid (e.g

dwCount=0).

OPC_E_PUBLIC Cannot remove items from a public group

ppError Codes

Return Code Description
S_OK The corresponding item was removed.
OPC_E_INVALIDHANDLE The corresponding Item handle was invalid.

Comments

Adding and removing items from a group does not affect the address space of the server or physical
device. It simply indicates whether or not the client is interested in those particular items.

Items are not really objects in the custom interface (do not have interfaces), and there is no concept of
a reference count for items. The client should insure that no further references are made to deleted
items.

Items cannot be removed from a public group.

 79

OPC Data Access Custom Interface Specification 2.05

4.5.2.4 IOPCItemMgt::SetActiveState
HRESULT SetActiveState(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in] BOOL bActive,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Sets one or more items in a group to active or inactive. This controls whether or not valid data can be
obtained from Read CACHE for those items and whether or not they are included in the IAdvise
subscription to the group.

Parameters Description

dwCount The number of items to be affected
phServer Array of Server items handles.
bActive TRUE if items are to be activated. FALSE if items are

to be deactivated.
ppErrors Array of HRESULTs. Indicates which items were

successfully affected.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function completed with one or more errors. See

the ppErrors to determine what happened
E_INVALIDARG An argument to the function was invalid (e.g

dwCount=0).

E_FAIL The function was unsuccessful.

ppError Codes

Return Code Description
S_OK The function was successful.
OPC_E_INVALIDHANDLE The corresponding Item handle was invalid.

Comments

Deactivating items will not result in a callback (since by definition callbacks do not occur for inactive
items). Activating items will generally result in an IAdvise callback at the next UpdateRate period.

 80

OPC Data Access Custom Interface Specification 2.05

4.5.2.5 IOPCItemMgt::SetClientHandles
HRESULT SetClientHandles(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] OPCHANDLE * phClient,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Changes the client handle for one or more items in a group.

Parameters Description

dwCount The number of items to be affected
phServer Array of Server items handles.
phClient Array of new Client item handles to be stored. The

Client handles do not need to be unique.
ppErrors Array of HRESULTs. Indicates which items were

successfully affected.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function completed with one or more errors. See

the itemResults to determine what happened
E_INVALIDARG An argument to the function was invalid (e.g

dwCount=0).

E_FAIL The function was unsuccessful.

itemResults Codes

Return Code Description
S_OK The function was successful.
OPC_E_INVALIDHANDLE The corresponding Item handle was invalid.

Comments

In general, it is expected that clients will set the client handle when the item is added and not change it
later. This function is most useful for setting the client handles for items in a public group to which the
client has connected.

 81

OPC Data Access Custom Interface Specification 2.05

4.5.2.6 IOPCItemMgt::SetDatatypes
HRESULT SetDatatypes(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] VARTYPE * pRequestedDatatypes,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Changes the requested data type for one or more items in a group.

Parameters Description

dwCount The number of items to be affected
phServer Array of Server items handles.
pRequestedDatatypes Array of new Requested Datatypes to be stored.
ppErrors Array of HRESULT’s. Indicates which items were

successfully affected.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE The function completed with one or more errors. See

the itemResults to determine what happened
E_INVALIDARG An argument to the function was invalid (e.g

dwCount=0).

E_FAIL The function was unsuccessful.

itemResults Codes

Return Code Description
S_OK The function was successful.
OPC_E_INVALIDHANDLE The corresponding Item handle was invalid.
OPC_E_BADTYPE The requested datatype cannot be supported

for this item. (See comment). The previous
requested type is left unchanged.

Comments

In general, it is expected that clients will set the requested datatype when the item is added and not
change it later. This function is most useful for setting the datatype for items in a public group to which
the client has connected.

As an alternative to OPC_E_BADTPYE it is acceptable for the server to return any FAILED error
returned by VariantChangeType or VariantChangeTypeEx.

 82

OPC Data Access Custom Interface Specification 2.05

4.5.2.7 IOPCItemMgt::CreateEnumerator
HRESULT CreateEnumerator(

[in] REFIID riid,
[out, iid_is(riid)] LPUNKNOWN* ppUnk
);

Description

Create an enumerator for the items in the group.

Parameters Description

riid The interface requested. At this time the only
supported OPC interface is
IID_IEnumOPCItemAttributes although vendors can
add their own extensions to this.

ppUnk Where to return the interface. NULL is returned for
any HRESULT other than S_OK

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
S_FALSE There is nothing to enumerate (There are no items in

the group).
E_OUTOFMEMORY Not enough memory
E_INVALIDARG An argument to the function was invalid (e.g. a bad riid

parameter was passed.)
E_FAIL The function was unsuccessful.

Comments

The client must release the returned interface pointer when it is done with it.

 83

OPC Data Access Custom Interface Specification 2.05

4.5.3 IOPCGroupStateMgt
IOPCGroupStateMgt allows the client to manage the overall state of the group. Primarily this allows
changes to the update rate and active state of the group.

4.5.3.1 IOPCGroupStateMgt::GetState
HRESULT GetState(
 [out] DWORD * pUpdateRate,
 [out] BOOL * pActive,
 [out, string] LPWSTR * ppName,
 [out] LONG * pTimeBias,
 [out] FLOAT * pPercentDeadband,
 [out] DWORD * pLCID,
 [out] OPCHANDLE * phClientGroup,
 [out] OPCHANDLE * phServerGroup
);

Description

Get the current state of the group.

Parameters Description

pUpdateRate The current update rate. The Update Rate is in
milliseconds

pActive The current active state of the group.
ppName The current name of the group
pTimeBias The TimeZone Bias of the group (in minutes)
pPercentDeadband The percent change in an item value that will cause an

exception report of that value to a client. This
parameter only applies to items in the group that have
dwEUType of Analog. [See discussion of Percent
Deadband in General Properties Section]

pLCID The current LCID for the group.
phClientGroup The client supplied group handle
phServerGroup The server generated group handle

 84

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

Comments

This function is typically called to obtain the current values of this information prior to calling
SetState. This information was all supplied by or returned to the client when the group was created.
This function is also useful for debugging.

All out arguments must be valid pointers. The marshaling mechanism requires valid pointers for
proper behavior. NULL pointers will throw an RPC exception.

The client must free the returned ppName string.

 85

OPC Data Access Custom Interface Specification 2.05

4.5.3.2 IOPCGroupStateMgt::SetState
HRESULT SetState(
 [unique, in] DWORD * pRequestedUpdateRate,
 [out] DWORD * pRevisedUpdateRate,
 [unique, in] BOOL *pActive,
 [unique, in] LONG * pTimeBias,
 [unique, in] FLOAT * pPercentDeadband
 [unique, in] DWORD * pLCID,
 [unique, in] OPCHANDLE *phClientGroup
);

Description

Client can set various properties of the group. Pointers to ‘in’ items are used so that the client can omit
properties he does not want to change by passing a NULL pointer.

The pRevisedUpdateRate argument must contain a valid pointer.

Parameters Description

pRequestedUpdateRate New update rate requested for the group by the client
(milliseconds)

pRevisedUpdateRate Closest update rate the server is able to provide for
this group.

pActive TRUE (non-zero) to active the group. FALSE (0) to
deactivate the group.

pTimeBias TimeZone Bias if Group (in minutes). See
Comments under
).

pPercentDeadband The percent change in an item value that will cause
an exception report of that value to a client. This
parameter only applies to items in the group that
have dwEUType of Analog. See discussion of
Percent Deadband in the General Information
Section

pLCID The Localization ID to be used by the group.
phClientGroup New client supplied handle for the group. This

handle is returned in the data stream provided to the
client’s IAdvise by the Groups IDataObject.

 86

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

OPC_S_UNSUPPORTEDRATE The server does not support the requested
data rate but will use the closest available
rate.

Comments

For public groups, the server maintains unique state information for each client for Active,
pUpdateRate, TimeZone. That is, the public groups behave as if each client had it’s own private copy.

Refer to Data Acquistion Section for details on the behavior of an OPC server with respect to the
Synchronous and Asynchronous interfaces and Active state of groups.

As noted in AddGroup the level of localization supported (dwLCID) is entirely server specific.
Servers which do not support dynamic localization can ignore this parameter.

 87

OPC Data Access Custom Interface Specification 2.05

4.5.3.3 IOPCGroupStateMgt::SetName
HRESULT SetName(
 [in, string] LPCWSTR szName,
);

Description

Change the name of a private group. The name must be unique. The name cannot be changed for
public groups.

Parameters Description

szName New name for group.

HRESULT Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

OPC_E_DUPLICATENAME Duplicate name not allowed.

Comments

Group names are required to be unique with respect to an individual client to server connection.

 88

OPC Data Access Custom Interface Specification 2.05

4.5.3.4 IOPCGroupStateMgt::CloneGroup

HRESULT CloneGroup(
 [in, string] LPCWSTR szName,
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk
);

Description

Creates a second copy of a group with a unique name. This works for both public and private groups.
However, the new group is always a private group. All of the group and item properties are duplicated
(as if the same set of AddItems calls had been made for the new group). That is, the new group
contains the same update rate, items, group and item clienthandles, requested data types, etc as the
original group. Once the new group is created it is entirely independent of the old group. You can add
and delete items from it without affecting the old group.

Properties NOT copied to the new group are

• Active Status of the new group is initially set to FALSE

• A new ServerHandle for the group is produced.

• New Item SeverHandles may also be assigned by the server. The client should query for these if it
needs them.

• The new group will NOT be connected to any Advise or Connection point sinks. The client would
need to establish new connections for the new group.

Parameters Description

szName Name of the group. The name must be unique among the
other groups created by this client. If no name is provided
(szName is a pointer to a NUL string) the server will
generate a unique name. The server generated name will
also be unique relative to any existing public groups.

riid requested interface type
ppUnk place to return interface pointer. NULL is returned for

any HRESULT other than S_OK

 89

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

OPC_E_DUPLICATENAME Duplicate name not allowed.

E_NOINTERFACE The interface(riid) asked for is not supported by
the server.

Comments

This represents a new group which is independent of the original group. See AddGroup for a
discussion of Group object lifetime issues. As with AddGroup the group must be deleted with
RemoveGroup when the client is done with it.

The client must also release the returned interface when it is no longer needed.

The primary use or intent of this function is to create a private duplicate of a public group which can
then be modified by the client.

 90

OPC Data Access Custom Interface Specification 2.05

4.5.4 IOPCPublicGroupStateMgt
This optional interface is used to convert a private group to a public group. Servers optionally provide
this interface on group objects. A group created by a client is always created initially as a private
group. This interface can be obtained from that private group in order to convert the group to a public
group.

4.5.4.1 IOPCPublicGroupStateMgt::GetState
HRESULT GetState(
 [out] BOOL * pPublic
);

Description

Used to determine if a particular group is public or not. If the interface is missing then all groups in the
server are private.

Parameters Description

pPublic TRUE if the group is public, FALSE if it is private

HRESULT Return Codes

Return Code Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid.

S_OK The operation succeeded.

Comments

A server which supports public groups can provide this interface for any group (private or public). In
practice a client will generally know for each group whether it is private or public. However, this
method is useful for debugging.

 91

OPC Data Access Custom Interface Specification 2.05

4.5.4.2 IOPCPublicGroupStateMgt::MoveToPublic
HRESULT MoveToPublic(
 void
);

Description

Converts a private group to a public group. The group must have a name which must be unique among
all existing public groups. The state of the group (active, UpdateRate, IAdvise connections, etc.) for
the calling client is not affected.

Parameters Description

void

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
E_OUTOFMEMORY Not enough memory
E_FAIL The function was unsuccessful.
OPC_E_DUPLICATENAME Duplicate Name not allowed

Comments

A public group cannot be converted back to a private group. However it can be ‘cloned’ into a new
private group.

For public groups, the update rate, client group handle and active status are maintained as ‘instance’
data for each client.

The client is required to set the client groupHandle before any asynchronous functions are performed
on a public group. After the group is made public other clients can connect to the group. Generally,
they must set their client instance information (e.g. group and item handles) prior to using the other
standard group interfaces associated with a group.

Once a group is made public, items cannot be added or deleted.

For the items in the group, the client handle, active status and requested data type are maintained as
‘instance’ data for each client.

 92

OPC Data Access Custom Interface Specification 2.05

4.5.5 IOPCSyncIO
IOPCSyncIO allows a client to perform synchronous read and write operations to a server. The
operations will run to completion.

Refer to the Data Acquisition and Active State Behavior table for an overview of the server data
acquisition behavior and it’s affect on functionality within this interface.

Also refer to the Serialization and Syncronization issues section earlier in this document.

4.5.5.1 IOPCSyncIO::Read
HRESULT Read(
 [in] OPCDATASOURCE dwSource,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [out, size_is(,dwCount)] OPCITEMSTATE ** ppItemValues,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

This function reads the value, quality and timestamp information for one or more items in a group.
The function runs to completion before returning. The data can be read from CACHE in which case it
should be accurate to within the ‘UpdateRate’ and percent deadband of the group. The data can be read
from the DEVICE in which case an actual read of the physical device is to be performed. The exact
implementation of CACHE and DEVICE reads is not defined by this specification.

When reading from CACHE, the data is only valid if both the group and the item are active. If either
the group or the item is inactive, then the Quality will indicate out of service
(OPC_QUALITY_OUT_OF_SERVICE). Refer to the discussion of the quality bits later in this
document for further information.

DEVICE reads are not affected by the ACTIVE state of the group or item.

Refer to the Data Acquisition and Active State Behavior table earlier in this document for an overview
of the server data acquisition behavior and it’s affect on functionality within this interface.

Parameters Description

dwSource The ‘data source’; OPC_DS_CACHE or
OPC_DS_DEVICE

dwCount The number of items to be read.
phServer The list of server item handles for the items to be read
ppItemValues Array of structures in which the item values are

returned.
ppErrors Array of HRESULTs indicating the success of the

individual item reads. The errors correspond to the
handles passed in phServer. This indicates whether the
read succeeded in obtaining a defined value, quality
and timestamp. NOTE any FAILED error code
indicates that the corresponding Value, Quality and
Time stamp are UNDEFINED.

 93

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

S_FALSE The operation succeeded but there are one or more
errors in ppErrors. Refer to individual error returns for
more infomation.

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid. (e.g
dwCount=0)

ppError Codes

Return Code Description
S_OK Successful Read.
E_FAIL The Read failed for this item
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The passed item handle was invalid.
OPC_E_UNKNOWNITEMID The item is no longer available in the server

address space.
S_xxx
E_xxx

S_xxx - Vendor specific information can be
provided if this item quality is other than
GOOD.
E_xxx - Vendor specific error if this item
cannot be accessed.
These vendor specific codes can be passed to
GetErrorString().

Comments

If the HRESULT is S_OK, then ppError can be ignored (all results in it are guaranteed to be S_OK).

If the HRESULT is S_FALSE, then ppError will indicate which the status of each individual Item
Read.

If the HRESULT is any FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters including ppErrors.

For any S_xxx ppError code the client should assume the curresponding ITEMSTATE is well defined
although the Quality may be UNCERTAIN or BAD. It is recommended (but not required) that server
vendors provide additional information here regarding UNCERTAIN or BAD items.

For any FAILED ppError code the client should assume the curresponding ITEMSTATE is undefined.
In fact the Server must set the corresponding ITEMSTATE VARIANT to VT_EMPTY so that it can
be marshalled properly and so that the client can execute VariantClear on it.

Note that here (as in the OPCItemMgt methods) OPC_E_INVALIDHANDLE on one item will not
affect the processing of other items and will cause the main HRESULT to return as S_FALSE

Expected behavior is that a CACHE read should be completed very quickly (within milliseconds). A
DEVICE read may take a very long time (many seconds or more). Depending on the details of the
implementation (e.g. which threading model is used) the DEVICE read may also prevent any other
operations from being performed on the server by any other clients.

 94

OPC Data Access Custom Interface Specification 2.05

For this reason Clients are expected to use CACHE reads in most cases. DEVICE reads are intended
for ‘special’ circumstances such as diagnostics.

The ppItemValues and ppErrors arrays are allocated by the server and must be freed by the client. Be
sure to call VariantClear() on the variant in the ITEMRESULT.

 95

OPC Data Access Custom Interface Specification 2.05

4.5.5.2 IOPCSyncIO::Write
HRESULT Write(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] VARIANT * pItemValues,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Writes values to one or more items in a group. The function runs to completion. The values are written
to the DEVICE. That is, the function should not return until it verifies that the device has actually
accepted (or rejected) the data.

Writes are not affected by the ACTIVE state of the group or item.

Parameters Description

dwCount Number of items to be written
phServer The list of server item handles for the items to be read
pItemValues List of values to be written to the items. The datatypes

of the values do not need to match the datatypes of the
target items. However an error will be returned if a
conversion cannot be done.

ppErrors Array of HRESULTs indicating the success of the
individual item Writes. The errors correspond to the
handles passed in phServer. This indicates whether the
target device or system accepted the value. NOTE any
FAILED error code indicates that the value was
rejected by the device.

 96

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

S_FALSE The operation succeeded but there are one or more
errors in ppErrors. Refer to individual error returns for
more infomation.

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid. (e.g
dwCount=0)

ppError Codes

Return Code Description
S_OK The function was successful.
E_FAIL The function was unsuccessful.
OPC_S_CLAMP The value was accepted but was clamped.
OPC_E_RANGE The value was out of range.
OPC_E_BADTYPE The passed data type cannot be accepted for this

item (See comment)
OPC_E_BADRIGHTS The item is not writeable
OPC_E_INVALIDHANDLE The passed item handle was invalid.
OPC_E_UNKNOWNITEMID The item is no longer available in the server

address space
E_xxx
S_xxx

Vendor specific errors may also be returned.
Descriptive information for such errors can be
obtained from GetErrorString.

 97

OPC Data Access Custom Interface Specification 2.05

Comments

If the HRESULT is S_OK, then ppError can be ignored (all results in it are guaranteed to be S_OK).

If the HRESULT is any FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters.

Note that here (as in the OPCItemMgt methods) OPC_E_INVALIDHANDLE on one item will not
affect the processing of other items and will cause the main HRESULT to return as S_FALSE

As an alternative to OPC_E_BADTPYE it is acceptable for the server to return any FAILED error
returned by VariantChangeType or VariantChangeTypeEx.

A DEVICE write may take a very long time (many seconds or more). Depending on the details of the
implementation (e.g. which threading model is used) the DEVICE write may also prevent any other
operations from being performed on the server by any other clients.

For this reason Clients are expected to use ASYNC write rather than SYNC write in most cases.

The ppErrors array is allocated by the server and must be freed by the client.

 98

OPC Data Access Custom Interface Specification 2.05

4.5.6 IOPCAsyncIO2
This interface is similar to IOPCAsync. This interface is intended to replace IOPCAsyncIO.

It differs from AsyncIO as follows;

• It is used to control a connection established with IConnectionPoint rather than IDataObject.
ConnectionPoints have been found to be a much cleaner way to return data than IDataObject.

• Some of the error handling logic is enhanced. Read and Write are allowed to return additional
errors (other than Bad Handle).

• The transaction ID logic has been changed. The previous (IOPCAsync) implementation did not
work well in combination with COM marshalling.

• The async read from cache capability is removed. In practice this was just a slower and more
complex form of a sync read from cache. Server design is simplified by removing this.

IOPCAsyncIO2 allows a client to perform asynchronous read and write operations to a server. The
operations will be ‘queued’ and the function will return immediately so that the client can continue to
run. Each operation is treated as a ‘transaction’ and is associated with a transaction ID. As the
operations are completed, a callback will be made to the IOPCDataCallback in the client. The
information in the callback will indicate the transaction ID and the results of the operation.

Also the expected behavior is that for any one transaction to Async Read, Write and Refresh, ALL of
the results of that transaction will be returned in a single call to appropriate function in
IOPCDataCallback.

A server must be able to ‘queue’ at least one transaction of each type (read, write, refresh) for each
group. It is acceptable for a server to return an error (CONNECT_E_ADVISELIMIT) if more than one
transaction of the same type is performed on the same group by the same client. Server vendors may of
course support queueing of additional transactions if they wish.

All operations that are successfully started are expected to complete even if they complete with an
error. The concept of ‘time-out’ is not explicitly addressed in this specification however it is expected
that where appropriate the server will internally implement any needed time-out logic and return a
server specific error to the caller if this occurs.

Client Implementation Note:

The Unique Transaction ID passed to Read, Write and Refresh is generated by the Client and is
returned to the client in the callback as a way to identify the returned data. To insure proper client
operation, this ID should generally be non-zero and should be unique to this particular client/server
conversation. It does not need to be unique relative to other conversations by this or other clients. In
any case however the transactionID is completly client specific and must not be checked by the server.

Note that the Group's Clienthandle is also returned in the callback and is generally sufficient to identify
the returned data.

IMPORTANT NOTE: depending on the mix of client and server threading models used, it has been
found in practice that the IOPCDataCallback can occur within the same thread as the Refresh, Read or
Write and in fact can occur before the Read, Write or Refresh method returns to the caller.

Thus, if the client wants to save a record of the transaction in some list of ‘outstanding transactions’ in
order to verify completion of a transaction it will need to generate the Transaction ID and save it
BEFORE making the method call.

In practice most clients will probably not need to maintain such a list and so do not actually need to
record the transaction ID.

 99

OPC Data Access Custom Interface Specification 2.05

4.5.6.1 IOPCAsyncIO2::Read
HRESULT Read(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in] DWORD dwTransactionID,
 [out] DWORD *pdwCancelID,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Read one or more items in a group. The results are returned via the client’s IOPCDataCallback
connection established through the server’s IConnectionPointContainer.

Reads are from ‘DEVICE’ and are not affected by the ACTIVE state of the group or item.

Parameters Description

dwCount Number of items to be read.
phServer Array of server item handles of the items to be read
dwTransactionID The Client generated transaction ID. This is included in

the ‘completion’ information provided to the
OnReadComplete.

pdwCancelID Place to return a Server generated ID to be used in case
the operation needs to be canceled.

ppErrors Array of errors for each item - returned by the server.
See below.

 100

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded. The read was
successfully initiated

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid. (
e.g dwCount=0)

S_FALSE One or more of the passed items could not
be read The ppError array indicates which
items in phServer could not be read. Any
items which do not return errors (E) here
will be read and results will be returned to
OnReadComplete. Items which do return
errors here will not be returned in the
callback.

CONNECT_E_NOCONNECTION The client has not registered a callback
through IConnectionPoint::Advise.

ppError Codes

Return Code Description
S_OK The corresponding Item handle was valid

and the item information will be returned
on OnReadComplete.

E_FAIL The Read failed for this item
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The passed item handle was invalid.
OPC_E_UNKNOWNITEMID The item is no longer available in the

server address space.
E_xxx
S_xxx

Vendor specific errors may also be
returned. Descriptive information for such
errors can be obtained from
GetErrorString.

Comments

Some servers will be ‘smarter’ at read time and return ‘early’ errors, others may simply queue the
request with minimal checking and return ‘late’ errors in the callback. The client should be prepared to
deal with this.

If the HRESULT is S_OK, then ppError can be ignored (all results in it are guaranteed to be S_OK).

If the HRESULT is any FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters. Note that in this case no Callback will occur.

If ALL errors in ppError are Failure codes then No callback will take place.

Items for which ppError returns any success code (including S_xxx) will be returned in the
OnReadComplete callback. Note that the error result for an item returned in the callback may differ
from that returned from Read.

 101

OPC Data Access Custom Interface Specification 2.05

NOTE: the server must return all of the results in a single callback. Thus, if the items in the group
require multiple physical transactions to one or more physical devices then the server must wait until
all of them are complete before invoking OnReadComplete.

The Client must free the returned ppError array.

 102

OPC Data Access Custom Interface Specification 2.05

4.5.6.2 IOPCAsyncIO2::Write
HRESULT Write(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] VARIANT * pItemValues,
 [in] DWORD dwTransactionID,
 [out] DWORD *pdwCancelID,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Write one or more items in a group. The results are returned via the client’s IOPCDataCallback
connection established through the server’s IConnectionPointContainer.

Parameters Description

dwCount Number of items to be written
phServer List of server items handles for the items to be written
pItemValues List of values to be written. The value data types do not

match the requested or canonical item datatype but
must be ‘convertible’ to the canonical type.

dwTransactionID The Client generated transaction ID. This is included in
the ‘completion’ information provided to the
OnWriteComplete.

pdwCancelID Place to return a Server generated ID to be used in case
the operation needs to be canceled.

ppErrors Array of errors for each item - returned by the server.
See below.

 103

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid. (
e.g dwCount=0)

S_FALSE One or more of the passed items could not
be written The ppError array indicates
which items in phServer could not be
write. Any items which do not return
errors (E) here will be written and results
will be returned to OnWriteComplete.
Items which do return errors here will not
be returned in the callback.

CONNECT_E_NOCONNECTION The client has not registered a callback
through IConnectionPoint::Advise.

ppError Codes

Return Code Description
S_OK The corresponding Item handle was valid.

The write will be attempted and the results
will be returned on OnWriteComplete

E_FAIL The function was unsuccessful.
OPC_E_BADRIGHTS The item is not writeable
OPC_E_INVALIDHANDLE The passed item handle was invalid.
OPC_E_UNKNOWNITEMID The item is no longer available in the

server address space
E_xxx
S_xxx

Vendor specific errors may also be
returned. Descriptive information for such
errors can be obtained from
GetErrorString.

Comments

Some servers will be ‘smarter’ at write time and return ‘early’ errors, others may simply queue the
request with minimal checking and return ‘late’ errors in the callback. The client should be prepared to
deal with this.

If the HRESULT is S_OK, then ppError can be ignored (all results in it are guaranteed to be S_OK).

If the HRESULT is any FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters. Note that in this case no Callback will occur.

If ALL errors in ppError are Failure codes then No callback will take place.

Items for which ppError returns any success code (including S_xxx) will also have a result returned in
the OnWriteComplete callback. Note that the error result for an item returned in the callback may
differ from that returned from Write.

 104

OPC Data Access Custom Interface Specification 2.05

NOTE: all of the results must be returned by the server in a single callback. Thus if the items in the
group require multiple physical transactions to one or more physical devices then the server must wait
until all of them are complete before invoking the callback.

Client must free the returned ppError array.

 105

OPC Data Access Custom Interface Specification 2.05

4.5.6.3 IOPCAsyncIO2::Refresh2
HRESULT Refresh2(
 [in] OPCDATASOURCE dwSource,
 [in] DWORD dwTransactionID,
 [out] DWORD *pdwCancelID
);

Description

Force a callback to IOPCDataCallback::OnDataChange for all active items in the group (whether they
have changed or not). Inactive items are not included in the callback.

Parameters Description

dwSource Data source CACHE or DEVICE. If the DEVICE, then
all active items in the CACHE are refreshed from the
device BEFORE the callback.

dwTransactionID The Client generated transaction ID. This is included in
the ‘completion’ information provided to the
OnDataChange.

pdwCancelID Place to return a Server generated ID to be used in case
the operation needs to be canceled.

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed. (See notes below)

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

CONNECT_E_NOCONNECTION The client has not registered a callback
through IConnectionPoint::Advise.

Comments

If the HRESULT is any FAILED code then no Callback will occur.

Calling Refresh for an InActive Group will return E_FAIL. Calling refresh for an Active Group,
where all the items in the group are InActive also returns E_FAIL.

The behavior of this function is identical to what happens when Advise is called initially except that
the OnDataChange Callback will include the transaction ID specified here. (The initial OnDataChange
callback will contain a Transaction ID of 0). Thus if it is important to the client to distinguish between
OnDataChange callbacks resulting from changes to values and OnDataChange callbacks resulting
from a Refresh2 request then a non-zero ID should be passed to Refresh2().

 106

OPC Data Access Custom Interface Specification 2.05

Functionally it is also similar to what could be achieved by doing a READ of all of the active items in
a group.

NOTE: all of the results must be returned in a single callback. Thus if the items in the group require
multiple physical transactions to one or more physical devices then the server must wait until all of
them are complete before invoking OnDataChange.

The expected behavior is that this Refresh will not affect the timing of normal OnDataChange
callbacks which are based on the UpdateRate. For example, if the update rate is 1 hour and this
method is called after 45 minutes then the server should still do its internal ‘checking’ at the end of the
hour (15 minutes after the Refresh call). Calling this method may affect the contents of that next
callback (15 minutes later) since only items where the value or status changed during that 15 minutes
would be included. Items which had changed during the 45 minutes preceding the Refresh will be sent
(along with all other values) as part of the Refresh Transaction. They would not be sent a second time
at the end of the hour. The value sent in response to the Refresh becomes the ‘last value sent’ to the
client when performing the normal subscription logic.

 107

OPC Data Access Custom Interface Specification 2.05

4.5.6.4 IOPCAsyncIO2::Cancel2
HRESULT Cancel2(
 [in] DWORD dwCancelID
);

Description

Request that the server cancel an outstanding transaction.

Parameters Description

dwCancelID The Server generated Cancel ID which was associated
with the operation when it was initiated.

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed. Either the Cancel ID was invalid
or it was ‘too late’ to cancel the transaction.

Comments

The exact behavior (for example whether an operation that has actually started will be aborted) will be
server specific and will also depend on the timing of the cancel request. Also, depending on the
timing, a Callback for the transaction may or may not occur. This method is intended for use during
shutdown of a task.

In general, if this operation succeeds then a OnCancelComplete callback will occur. If this operation
fails then a read, write or datachange callback may occur (or may already have occurred).

 108

OPC Data Access Custom Interface Specification 2.05

4.5.6.5 IOPCAsyncIO2::SetEnable
HRESULT SetEnable(
 [in] BOOL bEnable
);

Description

Controls the operation of OnDataChange. Basically setting Enable to FALSE will disable any
OnDataChange callbacks with a transaction ID of 0 (those which are not the result of a Refresh).

Parameters Description

bEnable TRUE enables OnDataChange callbacks, FALSE
disables OnDataChange callbacks.

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

CONNECT_E_NOCO
NNECTION

The client has not registered a callback through
IConnectionPoint::Advise.

E_FAIL The operation failed.

Comments

The initial value of this variable when the group is created is TRUE and thus OnDataChange callbacks
are enabled by default.

The purpose of this function is to allow a Connection to be established to an active group without
necessarily enabling the OnDataChange notifications. An example might be a client doing an
occasional Refresh from cache.

Even if a client does not intend to use the OnDataChange, it should still be prepared to deal with one or
more OnDataChange callbacks which might occur before the client has time to disable them (i.e. at
least free the memory associated with the 'out' parameters).

If the client really needs to prevent these initial unwanted callbacks then the following procedure can
be used. Client creates and populates the group. Client sets the group Active state to FALSE. Client
creates connection to group. Client uses this function to disable OnDataChange. sets the group Active
state back to TRUE.

This does NOT affect operation of Refresh2(). I.e. calling Refresh2 will still result in an
OnDataChange callback (with a non-zero transaction ID). Note that this allows Refresh to be used as
essentially an Async read from Cache.

 109

OPC Data Access Custom Interface Specification 2.05

4.5.6.6 IOPCAsyncIO2::GetEnable
HRESULT GetEnable(
 [out] BOOL *pbEnable
);

Description

Retrieves the last Callback Enable value set with SetEnable.

Parameters Description

pbEnable Where to save the returned result.

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

CONNECT_E_NOCO
NNECTION

The client has not registered a callback through
IConnectionPoint::Advise.

E_FAIL The operation failed.

Comments

See IOPCAsyncIO2::SetEnable() for additional information.

 110

OPC Data Access Custom Interface Specification 2.05

4.5.7 IConnectionPointContainer (on OPCGroup)
This interface provides functionality similar to the IDataObject but is easier to implement and to
understand and also provides some functionality which was missing from the IDataObject Interface.
The client must use the new IOPCAsyncIO2 interface to communicate via connections established
with this interface. IOPCAsyncIO2 is described elsewhere. The ‘old’ IOPCAsnyc will continue to
communicate via IDataObject connections as in the past.

The general principles of ConnectionPoints are not discussed here as they are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with this technology. OPC 2.0
Compliant Servers are REQUIRED to support this interface.

Likewise the details of the IEnumConnectionPoints, IConnectionPoint and IEnumConnections
interfaces are well defined by Microsoft and are not discussed here.

Note that IConnectionPointContainer is implemented on the OPCGROUP rather than on the individual
items. This is to allow the creation of a Callback connection between the client and the group using the
IOPCDataCallback Interface for the most efficient possible transfer of data (many items per
tranaction).

One callback object implemented by the client application can be used to service multiple groups.
Therefore, information about the group and the particular transaction must be provided to the client
application for it to be able to successfully interpret the items that are contained in the callback. Each
callback will contain only items defined within the specified group.

Note: OPC Compliant servers are not required to support more than one connection between each
Group and the Client. Given that groups are client specific entities it is expected that a single
connection (to each group) will be sufficient for virtually all applications. For this reason (as per the
COM Specification) the EnumConnections method for IConnectionPoint interface for the
IOPCDataCallback is allowed to return E_NOTIMPL.

 111

OPC Data Access Custom Interface Specification 2.05

4.5.7.1 IConnectionPointContainer::EnumConnectionPoints
HRESULT EnumConnectionPoints(
 IEnumConnectionPoints **ppEnum
);

Description

Create an enumerator for the Connection Points supported between the OPC Group and the Client.

Parameters Description

ppEnum Where to save the pointer to the connection point
enumerator. See the Microsoft documentation for a
discussion of IEnumConnectionPoints.

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCServers must return an enumerator that includes IOPCDataCallback. Additional vendor specific
callbacks are also allowed.

 112

OPC Data Access Custom Interface Specification 2.05

4.5.7.2 IConnectionPointContainer:: FindConnectionPoint
HRESULT FindConnectionPoint(
 REFIID riid,
 IConnectionPoint **ppCP

);

Description

Find a particular connection point between the OPC Group and the Client.

Parameters Description

ppCP Where to store the Connection Point. See the Microsoft
documentation for a discussion of IConnectionPoint.

riid The IID of the Connection Point. (e.g.
IID_IOPCDataCallBack)

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCServers must support IID_IOPCDataCallback. Additional vendor specific callbacks are also
allowed.

 113

OPC Data Access Custom Interface Specification 2.05

4.5.8 IEnumOPCItemAttributes
IEnumOPCItemAttributes allows a client to find out the contents (items) of a group and the attributes
of those items.

 NOTE: most of the returned information was either supplied by or returned to the client at the time it
called AddItem.

 The optional EU information (see the OPCITEMATTRIBUTES discussion) may be very useful to
some clients. This interface is also useful for debugging or for enumerating the contents of a public
group.

This interface is returned only by IOPCItemMgt::CreateEnumerator. It is not available through query
interface.

Since enumeration is a standard interface this is described only briefly.

See the OLE Programmer’s reference for Enumerators for a list and discussion of error codes.

4.5.8.1 IEnumOPCItemAttributes::Next
HRESULT Next(
 [in] ULONG celt,
 [out, size_is(,*pceltFetched)] OPCITEMATTRIBUTES ** ppItemArray,
 [out] ULONG * pceltFetched
);

Description

Fetch the next ‘celt’ items from the group.

Parameters Description

celt number of items to be fetched.
ppItemArray Array of OPCITEMATTRIBUTES. Returned by the

server.
pceltFetched Number of items actually returned.

Comments

The client must free the returned OPCITEMATTRIBUTES structure including the contained items;
szItemID, szAccessPath, pBlob, vEUInfo.

 114

OPC Data Access Custom Interface Specification 2.05

4.5.8.2 IEnumOPCItemAttributes::Skip
HRESULT Skip(
 [in] ULONG celt
);

Description

Skip over the next ‘celt’ attributes.

Parameters Description

celt Number of items to skip

Comments

Skip is probably not useful in the context of OPC.

 115

OPC Data Access Custom Interface Specification 2.05

4.5.8.3 IEnumOPCItemAttributes::Reset
HRESULT Reset(
 void
);

Description

Reset the enumerator back to the first item.

Parameters Description

void

Comments

 116

OPC Data Access Custom Interface Specification 2.05

4.5.8.4 IEnumOPCItemAttributes::Clone
HRESULT Clone(
 [out] IEnumOPCItemAttributes** ppEnumItemAttributes
);

Description

Create a 2nd copy of the enumerator. The new enumerator will initially be in the same ‘state’ as the
current enumerator.

Parameters Description

ppEnumItemAttributes Place to return the new interface

Comments

The client must release the returned interface pointer when it is done with it.

 117

OPC Data Access Custom Interface Specification 2.05

4.5.9 IOPCAsyncIO (old)
IOPCAsyncIO allows a client to perform asynchronous read and write operations to a server. The
operations will be ‘queued’ and the function will return immediately so that the client can continue to
run. Each operation is treated as a ‘transaction’ and is associated with a transaction ID. As the
operations are completed, a callback will be made to the IAdvise Sink in the client (if one has been
established). The information in the callback will indicate the transaction ID and the error results. By
convention, 0 is an invalid transaction id.

Also the expected behavior is that for any one transaction to Async Read, Write and Refresh, ALL of
the results of that transaction will be returned in a single call to OnDataChange.

A server must be able to ‘queue’ at least one transaction of each type (read, write, refresh) for each
group. It is acceptable for a server to return an error (CONNECT_E_ADVISELIMIT) if more than one
transaction of the same type is performed on the same group by the same client. Server vendors may of
course support queueing of additional transactions if they wish.

All operations are expected to complete even if they complete with an error. The concept of ‘time-out’
is not explicitly addressed in this specification however it is expected that where appropriate the server
will internally implement any needed time-out logic.

Client Implementation Note:

The Transaction ID is generated by the Server and returned to the client in the callback. Some clients
may want to save the ID returned by the server in some list of ‘outstanding transactions’ in order to
verify completion of a transaction. This could be complicated if the OnDataChange callback occurs
before the client has saved the returned ID.

Note: Version 1.0 of this specification suggested an approach involving critical sections. However,
depending on the mix of client and server threading models used, it has been found in practice that the
OnDataChange callback can occur within the same thread as the Read or Write and in fact can occur
before the Read or Write returns to the caller. Clearly, critical sections cannot resolve this case.

Although it has also been found in practice that many clients do not actually need to record the
transaction ID (the Group’s ClientHandle is generally sufficient to identify the returned data), the
following possible approach is suggested for those cases where this is needed.

 118

OPC Data Access Custom Interface Specification 2.05

Mainline Code

START CRITICAL SECTION

RECORD ALL NEEDED INFO ABOUT TRANSACTION EXCEPT TID.

CLEAR ‘TID COMPLETED’

SET A SPECIAL FLAG: ‘TID PENDING’

IOPCAsyncIO::Read or Write or Refresh

CHECK ‘TID COMPLETED’

IF SET AND EQUAL TO RETURNED TID THEN TRANSACTION IS COMPLETE

ELSE SAVE TRANSACTION ID IN LIST OF PENDING TRANSACTIONS

CLEAR ‘TID PENDING’

END CRITICAL SECTION

…

OnDataChange Code

START CRITICAL SECTION

READ DATA STREAM AND LOCATE TRANSACTION ID

LOCATE TRANSACTION ID IN LIST OF PENDING TRANSACTIONS

IF NOT FOUND, CHECK ‘TID PENDING’

IF ‘TID PENDING’ SET THEN RECORD THIS TID IN ‘TID COMPLETED’

END CRITICAL SECTION

…

 119

OPC Data Access Custom Interface Specification 2.05

4.5.9.1 IOPCAsyncIO::Read
HRESULT Read(
 [in] DWORD dwConnection,
 [in] OPCDATASOURCE dwSource,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [out] DWORD *pTransactionID,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Read one or more items in a group. The results are returned via the IAdvise Sink connection
established through the IDataObject.

For CACHE reads the data is only valid if both the group and the item are active.

DEVICE reads are not affected by the ACTIVE state of the group or item.

Parameters Description

dwConnection The OLE Connection number returned from
IDataObject::DAdvise. This is passed to help the server
determine which advise sink to call when the request
completes.

dwSource The data source; OPC_DS_CACHE or
OPC_DS_DEVICE

dwCount Number of items to be read.
phServer Array of server item handles of the items to be read
pTransactionID Place to return a Server generated transaction ID. This

is included in the ‘completion’ information provided to
the IAdvise.

ppErrors Array of errors for each item - returned by the server.
Indicates only if the corresponding server handle was
valid. Any other errors (communications time-out,
access rights, etc.) will be returned in the callback.
Note that at this time the only item level status
information available in the callback is the QUALITY
field.

 120

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded. The read was
successfully initiated

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_FALSE One or more of the passed handles was
invalid. The ppError array indicates which
handles in phServer were invalid. NOTE
if any handle is invalid this error is
returned and the entire ASYNC Read
operation is rejected. No callback will
occur.

CONNECT_E_NOCONNECTION The client has not registered a callback of
type OPCSTMFORMATDATA or
OPCSTMFORMATDATATIME through
IDataObject:DAdvise.

ppError Codes

Return Code Description
S_OK The corresponding Item handle was valid.
OPC_E_INVALIDHANDLE The corresponding Item handle was invalid

Comments

If the HRESULT is S_OK, then ppError can be ignored (all results in it are guaranteed to be S_OK).

If the HRESULT is any FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters. Note that in this case no Callback will occur.

Note that there is a difference in the handling of OPE_E_INVALIDHANDLE between SYNC read and
ASYNC read. In this case (ASYNC read) an INVALIDHANDLE on one item will cause the entire
request to be rejected and will cause the main HRESULT to return as S_FALSE. In this case the
ppErrors will contain one or more OPC_E_INVALIDHANDLE errors and no callback will occur.

The only item specific error checking done by this call is to validate the passed handles. Thus ppErrors
always contains values of either S_OK or OPC_E_INVALIDHANDLE. If all of the passed handles are
valid and the operation is performed then all item level error returns will be via OnDataChange. Note
that at this time the only item level status information available in the Callback is the QUALITY field.

NOTE: all of the results must be returned by the server in a single callback.

If the items in the group require multiple physical transactions to one or more physical devices then the
server must wait until all of them are complete before invoking OnDataChange.

The Client must free the returned ppError array.

The transaction ID generated by the server should be globally unique and non-zero.

The transaction ID is used to identify the results that are returned in the OnDataChange. The client
may also use the transactionID when attempting to cancel an in progress asynchronous function

 121

OPC Data Access Custom Interface Specification 2.05

4.5.9.2 IOPCAsyncIO::Write
HRESULT Write(
 [in] DWORD dwConnection,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] VARIANT * pItemValues,
 [out] DWORD *pTransactionID,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

Description

Write one or more items in a group. The results are returned via the IAdviseSink connection
established through the IDataObject.

Parameters Description

dwConnection The OLE Connection number returned from
IDataObject::DAdvise. This is passed to help the server
determine which advise sink to call when the request
completes.

dwCount Number of items to be written
phServer List of server items handles for the items to be written
pItemValues List of values to be written. The value data types do not

match the requested or canonical item datatype but
must be ‘convertible’ to the canonical type.

pTransactionID Place to return a Server generated transaction ID. This
is included in the ‘completion’ information provided to
the IAdvise.

ppErrors Array of errors for each item - returned by the server.
Indicates only if the corresponding server handle was
valid. Any other errors (communications time-out,
access rights, etc.) will be returned in the callback.

 122

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

S_FALSE One or more of the passed handles was
invalid. The ppError array indicates which
handles in phServer were invalid. NOTE
that if any handle is invalid this error is
returned and the entire operation is
rejected. No callback will occur.

CONNECT_E_NOCONNECTION The client has not registered a callback of
type
OPCSTMFORMATWRITECOMPLETE
through IDataObject:DAdvise.

ppError Codes

Return Code Description
S_OK The corresponding Item handle was valid.
OPC_E_INVALIDHANDLE The corresponding Item handle was invalid

Comments

If the HRESULT is S_OK, then ppError can be ignored (all results in it are guaranteed to be S_OK).

If the HRESULT is any FAILED code then (as noted earlier) the server should return NULL pointers
for all OUT parameters. Note that in this case no Callback will occur.

Note that there is a difference in the handling of OPE_E_INVALIDHANDLE between SYNC write
and ASYNC write. In this case (ASYNC write) an INVALIDHANDLE on one item will cause the
entire request to be rejected and will cause the main HRESULT to return as S_FALSE. In this case the
ppErrors will contain one or more OPC_E_INVALIDHANDLE errors and no callback will occur.

The only item specific error checking done by this call is to validate the passed handles. . Thus
ppErrors always contains values of either S_OK or OPC_E_INVALIDHANDLE. If all of the passed
handles are valid and the operation is performed then all item level error returns will be via
OnDataChange. These error codes have the same values as those returned by IOPCSyncIO::Write.

NOTE: all of the results must be returned by the server in a single callback.

If the items in the group require multiple physical transactions to one or more physical devices then the
server must wait until all of them are complete before invoking OnDataChange.

Client must free the returned ppError array.

See the notes under ‘Read’ regarding the transaction ID.

 123

OPC Data Access Custom Interface Specification 2.05

4.5.9.3 IOPCAsyncIO::Refresh
HRESULT Refresh(
 [in] DWORD dwConnection,
 [in] OPCDATASOURCE dwSource,
 [out] DWORD *pTransactionID
);

Description

Force a callback for all active items in the group (whether they have changed or not). Inactive items
are not included in the callback.

Parameters Description

dwConnection The OLE Connection number returned from
IDataObject::DAdvise. This is passed to help the server
determine which advise sync to call when the request
completes.

dwSource Data source CACHE or DEVICE
pTransactionID Place to return a Server generated transaction ID. This

is included in the ‘completion’ information provided to
the IAdvise.

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed. (See notes below)

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid.

CONNECT_E_NOCONNECTION The client has not registered a callback of
type OPCSTMFORMATDATA or
OPCSTMFORMATDATATIME through
IDataObject:DAdvise.

Comments

If the HRESULT is any FAILED code then no Callback will occur.

Calling refresh for an InActive Group will return E_FAIL. Calling refresh for an Active Group, where
all the items in the group are InActive also returns E_FAIL.

The behavior of this function is identical to what happens when DAdvise is called using
ADVF_PRIMEFIRST except that the Callback will include a non-zero transaction ID.

Functionally it is also similar to what could be achieved by doing a READ from CACHE of all of the
active items in a group.

NOTE: all of the results must be returned in a single callback.

If the items in the group require multiple physical transactions to one or more physical devices then the
server must wait until all of them are complete before invoking OnDataChange.

 124

OPC Data Access Custom Interface Specification 2.05

The expected behavior is that this Refresh will not affect the timing of normal OnDataChange
callbacks which are based on the UpdateRate. For example, if the update rate is 1 hour and this
method is called after 45 minutes then the server should still do its internal ‘checking’ at the end of the
hour (15 minutes after the Refresh call). Calling this method may affect the contents of that next
callback (15 minutes later) since only items where the value or status changed during that 15 minutes
would be included. Items which had changed during the 45 minutes preceding the Refresh will be sent
(along with all other values) as part of the Refresh Transaction. They would not be sent a second time
at the end of the hour. The value sent in response to the Refresh becomes the ‘last value sent’ to the
client when performing the normal subscription logic.

See the notes under ‘Read’ regarding the transaction ID.

 125

OPC Data Access Custom Interface Specification 2.05

4.5.9.4 IOPCAsyncIO::Cancel
HRESULT Cancel(
 [in] DWORD dwTransactionID
);

Description

Request that the server cancel an outstanding transaction.

Parameters Description

dwTransactionID The transaction ID which was associated with the
operation to be canceled.

HRESULT Return Codes

Return Code Description

S_OK The operation succeeded.

E_FAIL The operation failed. Either the transaction ID was
invalid or it was ‘too late’ to cancel the transaction.

Comments

The exact behavior (for example whether an operation that has actually started will be aborted) will be
server specific and will also depend on the timing of the cancel request. Also, depending on the
timing, a Callback for the transaction may or may not occur. This method is intended to be used
during shutdown of a task.

In general, if this operation succeeds then no callback will occur. If this operation fails then a callback
may occur (or may already have occured).

 126

OPC Data Access Custom Interface Specification 2.05

4.5.10 IDataObject (old)
The OPC Specification requires the IDataObject to be implemented for the OPC servers.

 IDataObject is implemented on the OPCGroup rather than on the individual items. This allows the
creation of an Advise connection between the client and the group using the OPC Data Stream Formats
for the efficient data transfer.

It is required that the following methods be supported.

 DAdvise

 DUnadvise

Because the IDataObject deals with a STREAM rather than individual items, the following methods do
not need to be supported (they can be implemented as stubs which return E_NOTIMPL.

 GetData

 GetDataHere

 GetCanonicalFormatEtc

The server vendor may chose to implement additional methods on the IDataObject. It is the intent of
this design that data items be transferred to applications primarily via the Advise connection or via the
Synchronous or Asynchronous Read methods.

The data returned to the Advise connection is returned via a IAdviseSink which receives data in a
Global Memory Section also referred to here as the ‘stream’. These streams can be in several formats.
They are used to provide exception data as well as completion information for Async Reads and
Writes. The stream formats are

“OPCSTMFORMATDATA”

“OPCSTMFORMATDATATIME”

“OPCSTMFORMATWRITECOMPLETE”

Use the function

 RegisterClipboardFormat()

to obtain the format value (cfFormat) to be used for data transfers between OPC client applications and
OPC server applications.

The registered callback function (OnDataChange in the client’s IAdviseSink) may be specified by the
client application so that it spans multiple groups. Information about the group (the Group’s
ClientHandle) must be provided to the client application as part of the stream so that the client can
successfully interpret the items that are contained in the data stream. Each data stream will only
contain the items defined within the specified group.

Because of the nature of the asynchronous calls, OLE requires that no synchronous calls are made
from a method that has been called asynchronously (as all of the IAdviseSink methods are) which
would cause the asynchronous function to be blocked. It is very important that the methods that are
called asynchronously (the IAdviseSink methods) have limited processing, and return quickly.
Lengthy processing should be done outside of the context of the asynchronous method that has been
invoked.

It is the client application’s responsibility to keep up with the data changes that the server (configured
by the client app) sends. The client should assume that the server may send data at the update rate
specified in the group, and that for each group that identical throughput may occur. Various Windows
and OLE related internal errors can result if the server sends data faster than the client can receive it.

 127

OPC Data Access Custom Interface Specification 2.05

The performance of the OPC servers and OPC clients is highly tied to the developers implementation
of these critical interfaces.

The server should be implemented to optimize the acquisition of the data items for multiple clients
wherever possible. This means that it is best for the server to read data from devices at the fastest rate
possible: (a) to support the needs of multiple clients configured for the same item or (b), if a single
client has configured the same item in different groups at different update rates.

Refer to the OLE programming manual for a tutorial and guide to implementing
the required functionality.

 128

OPC Data Access Custom Interface Specification 2.05

4.5.10.1 IDataObject::DAdvise
HRESULT DAdvise(

FORMATETC *pFmt,
DWORD adv,
LPADVISESINK pSnk,
DWORD * pConnection
);

Description

Create a connection for a particular ‘stream’ format between the OPC Group and the Client.

Parameters Description

pFmt The format in which the client is interested. This will
always be one of the three supported OPC formats as
described below.

adv Data Advise Flags specifier. Not used by OPC.
pSnk Pointer to the Client’s IAdviseSink
pConnection OLE Connection key for use with IOPCAsyncIO and

UnAdvise

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
CONNECT_E_ADVISEL
IMIT

The group cannot support additional connections of
this type.

For other codes see the
OLE programmers
reference

Comments

Since groups are specific to a client, it is sufficient for OPC Compliance that a group support only a
single ‘connection point’ for each stream format. A second attempt by the same client to subscribe to
the same stream format on the same group may return CONNECT_E_ADVISELIMIT.

The Advise Flags Parameter (adv) is not used by OPC. Servers should ignore this parameter and
should always send a copy of all data items when a connection is made. Note that this is equivalent to
the behavior associated with ADVF_PRIMEFIRST.

It is expected that a client will assign unique values to the group and item client handles if they intend
to use any of the asynchronous functions of the OPC interfaces, including IOPCAsyncIO, and
IDataObject/IAdviseSink interfaces, since this is the only key to the information that the server
provides back to the client with the OnDataChange stream.

 129

OPC Data Access Custom Interface Specification 2.05

The ‘formats’ really represent different types of events rather than different formats for the same data.

The FORMATETC must be filled in as follows;

fe.cfFormat = OPCSTMFORMATDATA or

OPCSTMFORMATDATATIME or
OPCSTMFORMATWRITECOMPLETE.
(See RegisterClipboardFormat())

fe.dwAspect = DVASPECT_CONTENT;
fe.ptd = NULL;
fe.tymed = TYMED_HGLOBAL;
fe.lindex = -1;

The storage medium will always be TYMED_HGLOBAL (for computability with DCOM).

 130

OPC Data Access Custom Interface Specification 2.05

4.5.10.2 IDataObject::DUnadvise
HRESULT DUnadvise(

DWORD Connection
);

Description

Terminate a connection between the OPC Group and the Client.

Parameters Description

Connection The connection to be terminated

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

 131

OPC Data Access Custom Interface Specification 2.05

4.6 Client Side Interfaces

4.6.1 IOPCDataCallback
In order to use connection points, the client must create an object that supports both the IUnknown and
IOPCDataCallback Interface. The client would pass a pointer to the IUnknown interface (NOT the
IOPCDataCallback) to the Advise method of the proper IConnectionPoint in the server (as obtained
from IConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The Server will
call QueryInterface on the client object to obtain the IOPCDataCallback interface. Note that the
transaction must be performed in this way in order for the interface marshalling to work properly for
Local or Remote servers.

All of the methods below must be implemented by the client.

This Interface will be called as a result of changes in the data of the group (OnDataChange) and also as
a result of calls to the IOPCAsyncIO2 interface.

Note: although it is not recommended, the client could change the active status of the group or items
while an Async call is outstanding. The server should be able to deal with this in a reasonable fashion
(i.e. not crash) although the exact behavior is undefined.

Note: memory management follows the standard COM rules. That is, the server allocates 'in'
parameters and frees them after the client returns. The client only frees 'out' parameters. In the case of
these callbacks there are no 'out' parameters so all memory is owned by the server.

 132

OPC Data Access Custom Interface Specification 2.05

4.6.1.1 IOPCDataCallback::OnDataChange
HRESULT OnDataChange(
 [in] DWORD dwTransid,
 [in] OPCHANDLE hGroup,
 [in] HRESULT hrMasterquality,
 [in] HRESULT hrMastererror,
 [in] DWORD dwCount,
 [in, sizeis(dwCount)] OPCHANDLE * phClientItems,
 [in, sizeis(dwCount)] VARIANT * pvValues,
 [in, sizeis(dwCount)] WORD * pwQualities,
 [in, sizeis(dwCount)] FILETIME * pftTimeStamps,
 [in, sizeis(dwCount)] HRESULT *pErrors
);

Description

This method is provided by the client to handle notifications from the OPC Group for exception based
data changes and Refreshes.

Parameters Description

dwTransid 0 if the call is the result of an ordinary subscription. If
the call is the result of a call to Refresh2 then this is the
value passed to Refresh2.

hGroup The Client handle of the group
hrMasterquality S_OK if OPC_QUALITY_MASK for all ‘qualities’

are OPC_QUALITY_GOOD, S_FALSE otherwise.
hrMastererror S_OK if all ‘errors are S_OK, S_FALSE otherwise.
dwCount The number of items in the client handle list
phClientItems The list of client handles for the items which have

changed.
pvValues A List of VARIANTS containing the values (in

RequestedDataType) for the items which have
changed.

pwQualities A List of Quality values for the items
pftTimeStamps A list of TimeStamps for the items
pErrors A list of HRESULTS for the items. If the quality of a

data item has changed to UNCERTAIN or BAD., this
field allows the server to return additional server
specific errors which provide more useful information
to the user. See below.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

 133

OPC Data Access Custom Interface Specification 2.05

‘pErrors’ Return Codes

Return Code Description
S_OK The returned data for this item quality is GOOD.
E_FAIL The Operation failed for this item.
OPC_E_BADRIGHTS The item is or has become not readable.
OPC_E_UNKNOWNITEMID The item is no longer available in the server

address space.
S_xxx, E_xxx S_xxx - Vendor specific information can be

provided if this item quality is other than
GOOD.
E_xxx - Vendor specific error if this item cannot
be accessed.
These vendor specific codes can be passed to
GetErrorString().

Comments

For any S_xxx pErrors code the client should assume the curresponding Value, Quality and Timestamp
are well defined although the Quality may be UNCERTAIN or BAD. It is recommended (but not
required) that server vendors provide additional information here regarding UNCERTAIN or BAD
items.

For any FAILED ppError code the client should assume the curresponding Value, Quality and
Timestamp are undefined. In fact the Server must set the corresponding Value VARIANT to
VT_EMPTY so that it can be marshalled properly.

This section will discuss the reasons why the client may receive callbacks.

Callbacks can occur for the following reasons;

• One or more ‘data change’ events. These will happen for active items within an active group
where the value or quality of the item has changed. They will happen no faster than the
‘updaterate’ of the group. Deadband is used to determine what items have changed. The
TransactionID will be 0 in this case. In general, additional updates are not sent unless there is a
change in value or quality.

• Refresh Request made through the AsyncIO2 interface. These will happen for all active items in
an active group. They will happen as soon as possible after the refresh request is made. The handle
list will contain the handles for all of the active items in the group. The transaction ID will be
non-0 in this case.

The 'errors' array can return additional information in the case where the server is having problems
obtaining data for an Item. These vendor specific errors could contain helpful information about
communications errors or device status. E_FAIL, while allowed, is generally not a very helpful error to
return.

 Note: although it is not recommended, the client could change the active status of the group or items
while an Async call is outstanding. The server should be able to deal with this in a reasonable fashion
(i.e. not crash) although the exact behavior is undefined.

During cleanup after the callback the Server must be sure to do a VariantClear() on each of the value
Variants.

 134

OPC Data Access Custom Interface Specification 2.05

4.6.1.2 IOPCDataCallback::OnReadComplete
HRESULT OnReadComplete(
 [in] DWORD dwTransid,
 [in] OPCHANDLE hGroup,
 [in] HRESULT hrMasterquality,
 [in] HRESULT hrMastererror,
 [in] DWORD dwCount,
 [in, sizeis(dwCount)] OPCHANDLE * phClientItems,
 [in, sizeis(dwCount)] VARIANT * pvValues,
 [in, sizeis(dwCount)] WORD * pwQualities,
 [in, sizeis(dwCount)] FILETIME * pftTimeStamps,
 [in, sizeis(dwCount)] HRESULT *pErrors
);

Description

This method is provided by the client to handle notifications from the OPC Group on completion of
Async Reads.

Parameters Description

dwTransid The TransactionID returned to the client when the
Read was initiated.

hGroup The Client handle of the group
hrMasterquality S_OK if OPC_QUALITY_MASK for all ‘qualities’

are OPC_QUALITY_GOOD, S_FALSE otherwise.
hrMastererror S_OK if all ‘errors are S_OK, S_FALSE otherwise.
dwCount The number of items in the client handle, values,

qualities, times and errors lists. This may be less than
the number of items passed to Read. Items for whic
errors were detected and returned from Read are not
included in the callback.

phClientItems The list of client handles for the items which were read.
This is NOT guarenteed to be in any particular order
although it will match the values, qualities, times and
errors array.

pvValues A List of VARIANTS containing the values (in
RequestedDataType) for the items.

pwQualities A List of Quality values for the items
pftTimeStamps A list of TimeStamps for the items
pErrors A list of HRESULTS for the items. If the system is

unable to return data for an item, this field allows the
server to return additional server specific errors which
provide more useful information to the user.

 135

OPC Data Access Custom Interface Specification 2.05

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK

‘pErrors’ Return Codes

Return Code Description
S_OK The returned data for this item quality is GOOD.
E_FAIL The Read failed for this item
OPC_E_BADRIGHTS The item is not readable
OPC_E_INVALIDHANDLE The passed item handle was invalid. (Generally

this should already have been tested by
AsyncIO2::Read).

OPC_E_UNKNOWNITEMID The item is no longer available in the server
address space.

S_xxx, E_xxx S_xxx - Vendor specific information can be
provided if this item quality is other than
GOOD.
E_xxx - Vendor specific error if this item cannot
be accessed.
These vendor specific codes can be passed to
GetErrorString().

Comments

For any S_xxx pErrors code the client should assume the curresponding Value, Quality and Timestamp
are well defined although the Quality may be UNCERTAIN or BAD. It is recommended (but not
required) that server vendors provide additional information here regarding UNCERTAIN or BAD
items.

For any FAILED ppError code the client should assume the curresponding Value, Quality and
Timestamp are undefined. In fact the Server must set the corresponding Value VARIANT to
VT_EMPTY so that it can be marshalled properly.

Items for which an error (E_xxx) was returned in the initial AsyncIO2 Read request will NOT be
returned here. I.e. the returned list may be ‘sparse’. Also the order of the returned list is not specified
(it may not match the order of the list passed to read).

This Callback occurs only after an AsyncIO2 Read.

The 'pErrors' array can return additional information in the case where the server is having problems
obtaining data for an Item. These vendor specific errors could contain helpful information about
communications errors or device status. E_FAIL, while allowed, is generally not a very helpful error to
return.

 136

OPC Data Access Custom Interface Specification 2.05

4.6.1.3 IOPCDataCallback::OnWriteComplete
HRESULT OnWriteComplete(
 [in] DWORD dwTransid,
 [in] OPCHANDLE hGroup,
 [in] HRESULT hrMasterError,
 [in] DWORD dwCount,
 [in, sizeis(dwCount)] OPCHANDLE * phClientItems,
 [in, sizeis(dwCount)] HRESULT * pError
);

Description

This method is provided by the client to handle notifications from the OPC Group on completion of
AsyncIO2 Writes.

Parameters Description

dwTransid The TransactionID returned to the client when the
Write was initiated.

hGroup The Client handle of the group
hrMasterError S_OK if all ‘errors are S_OK, S_FALSE otherwise.
dwCount The number of items in the client handle and errors list.

This may be less than the number of items passed to
Write. . Items for which errors were detected and
returned from Write are not included in the callback.

phClientItems The list of client handles for the items which were
written. This is NOT guarenteed to be in any particular
order although it must match the ‘errors’ array.

pErrors A List of HRESULTs for the items. Note that Servers
are allowed to define vendor specific error codes here.
These codes can be passed to GetErrorString().

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK

‘pErrors’ Return Codes

Return Code Description
S_OK The data item was written.
OPC_E_BADRIGHTS The item is not writable.
OPC_E_INVALIDHANDLE The passed item handle was invalid. (Generally

this should already have been tested by
AsyncIO2::Write).

OPC_E_UNKNOWNITEMID The item is no longer available in the server
address space.

S_xxx, E_xxx S_xxx - the data item was written but there is a
vendor specific warning (for example the value
was clamped).

 137

OPC Data Access Custom Interface Specification 2.05

E_xxx - the data item was NOT written and
there is a vendor specific error which provides
more information (for example the device is
offline). These codes can be passed to
GetErrorString().

Comments

Items for which an error (E_xxx) was returned in the initial AsyncIO2 Write request will NOT be
returned here. I.e. the returned list may be ‘sparse’. Also the order of the returned list is not specified
(it may not match the order of the list passed to write).

This Callback occurs only after an AsyncIO2 Write.

The 'errors' array can return additional information in the case where the server is having problems
accessing data for an Item. These vendor specific errors could contain helpful information about
communications errors or device status. E_FAIL, while allowed, is generally not a very helpful error to
return.

 138

OPC Data Access Custom Interface Specification 2.05

4.6.1.4 IOPCDataCallback::OnCancelComplete
HRESULT OnCancelComplete(
 [in] DWORD dwTransid,
 [in] OPCHANDLE hGroup
);

Description

This method is provided by the client to handle notifications from the OPC Group on completion of
Async Cancel.

Parameters Description

dwTransid The TransactionID provided by the client when the
Read, Write or Refresh was initiated.

hGroup The Client handle of the group

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK

Comments

This Callback occurs only after an AsyncIO2 Cancel. Note that if the Cancel Request returned S_OK
then the client can expect to receive this callback. If the Cancel request Failed then the client should
NOT receive this callback

 139

OPC Data Access Custom Interface Specification 2.05

4.6.2 IOPCShutdown
In order to use this connection point, the client must create an object that supports both the IUnknown
and IOPCShutdown Interface. The client would pass a pointer to the IUnknown interface (NOT the
IOPCShutdown) to the Advise method of the proper IConnectionPoint in the server (as obtained from
IConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The Server will call
QueryInterface on the client object to obtain the IOPCShutdown interface. Note that the transaction
must be performed in this way in order for the interface marshalling to work properly for Local or
Remote servers.

The ShutdownRequest method on this Interface will be called when the server needs to shutdown. The
client should release all connections and interfaces for this server.

A client which is connected to multiple OPCServers (for example Data access and/or other servers
such as Alarms and events servers from one or more vendors) should maintain separate shutdown
callbacks for each object since any server can shut down independently of the others.

4.6.2.1 IOPCShutdown::ShutdownRequest
HRESULT ShutdownRequest (
 [in] LPWSTR szReason
);

Description

This method is provided by the client so that the server can request that the client disconnect from the
server. The client should UnAdvise all connections, Remove all groups and release all interfaces.

Parameters Description

szReason An optional text string provided by the server
indicating the reason for the shutdown. The server may
pass a pointer to a NUL string if no reason is provided.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

Comments

The shutdown connection point is on a ‘per COM object’ basis. That is, it relates to the object created by
CoCreate… If a client connects to multiple COM objects then it should monitor each one separately for
shutdown requests.

 140

OPC Data Access Custom Interface Specification 2.05

4.6.3 IAdviseSink (old)
The client need only provide a full implementation of OnDataChange. The other methods of
IAdviseSink can be implemented as stubs since they will never be called. Callbacks can occur for
several reasons; simple Subscription, Async Read, Async Write, Refresh. A client can be written such
that it performs several of these operations in parallel. In this case the client can determine the ‘cause’
of a particular callback by examining first the data format as provided in the FORMATETC and
second the Transaction ID as contained in the stream.

Because of the nature of the asynchronous calls, OLE requires that no synchronous calls are made
from a method that has been called asynchronously (as all of the IAdviseSink methods are) which
would cause the asynchronous function to be blocked. It is very important that the methods that are
called asynchronously (the IAdviseSink methods) have limited processing, and return quickly.
Lengthy processing should be done outside of the context of the asynchronous method that has been
invoked.

It is client application responsibility to keep up with the data changes that the server has been
configured by the client application to send. The client should assume that the server may send data at
the update rate specified in the group, and that for each group that identical throughput may occur.
Various Windows and OLE related internal errors can result if the server sends data faster than the
client can receive it. The performance of the OPC servers and OPC clients is highly tied to the
developers implementation of these critical interfaces.

 141

OPC Data Access Custom Interface Specification 2.05

4.6.3.1 IAdviseSink::OnDataChange
void OnDataChange (
[in] FORMATETC * pFE,
[in] STGMEDIUM * pSTM
);

Description

This method is provided by the client to handle notifications from the OPC Group for exception based
data changes, Async reads and Refreshes and Async Write Complete.

Parameters Description

pFE the format of the data being receive by the sink
pSTM the storage medium containing the data.

Comments

This section will discuss the reasons why the client may receive callbacks, the contents of
FORMATETC and the contents of the STGMEDIUM.

Note that the caller (the server) owns and will free the storage since the parameters are all 'in's.

The client should NOT free the STGMEDIUM. Also note that the storage is valid only for the
duration of the OnDataChange call.

Callbacks can occur for several reasons;

• One or more ‘data change’ events with timestamp (format will be
OPCSTMFORMATDATATIME and transaction ID will be 0). This format is also used in
response to a Refresh and ASYNC READ with a non-zero transaction ID.

• One or more ‘data change’ events without timestamp (format will be OPCSTMFORMATDATA
and transaction ID will be 0). This format is also used in response to a Refresh and ASYNC
READ with a non-zero transaction ID.

• Completion of an ASYNC WRITE. (format will be OPCSTMFORMATWRITECOMPLETE and
transaction ID will be non-0)

The FORMATETC will be filled in as follows;

fe.cfFormat = OPCSTMFORMATDATA or

OPCSTMFORMATDATATIME or
OPCSTMFORMATWRITECOMPLETE.

fe.ptd = NULL;
fe.dwAspect = DVASPECT_CONTENT;
fe.lindex = -1;
fe.tymed = TYMED_HGLOBAL;

 142

OPC Data Access Custom Interface Specification 2.05

The storage medium will always be TYMED_HGLOBAL (for computability with DCOM). The global
memory handle can be found in pSTM.hGlobal. GlobalLock() can be used to convert this to a pointer.

The data stored in the global memory by the server will have one of several structures depending on
the Format (which depends on the event that generated the data). Although the data resides in this
structure in global memory, we refer to it as a ‘data stream’.

These three formats are summarized below and are described in detail later in the document.

OPCSTMFORMATDATATIME Data with TimeStamp
The data consists of a group header followed by one or more item headers followed by the data.

OPCGROUPHEADER

OPCITEMHEADER1[hdr.dwItemCount]

VARIANTS[hdr.dwItemCount]

OPCSTMFORMATDATA Data without TimeStamp
The data consists of a group header followed by one or more item headers followed by the data.

OPCGROUPHEADER

OPCITEMHEADER2[hdr.dwItemCount]

VARIANTS[hdr.dwItemCount]

OPCSTMFORMATWRITECOMPLETE Async Write Complete
The data consists of a group header followed by one or more item headers followed by the data.

OPCGROUPHEADERWRITE

OPCITEMHEADERWRITE[hdr.dwItemCount]

4.6.4 IAdviseSink - Data Stream Formats (old)
This section describes the data structures associated with the three stream formats used in the
IDataObject / IAdviseSink connection. It also discusses the critical issue of the Packing of these
streams and structures. These formats are also discussed in the Client Side Custom Interface section.

The following table shows the clipboard format names.

“OPCSTMFORMATDATA” Used for On Data Change, Refresh and Async Read

“OPCSTMFORMATDATATIME” Used for On Data Change, Refresh and Async Read

“OPCSTMFORMATWRITECOMPLETE” Used for Async Write

Clients and servers must ‘Register’ these stream formats by calling the windows function
RegisterClipboardFormat();

 143

OPC Data Access Custom Interface Specification 2.05

4.6.4.1 OPCGROUPHEADER
typedef struct {
 DWORD dwSize;
 DWORD dwItemCount;
 OPCHANDLE hClientGroup;
 DWORD dwTransactionID;
 HRESULT hrStatus;
} OPCGROUPHEADER;

This structure can appear at the head of the OPCSTMFORMATDATA or OPCSTMFORMATDATATIME
data stream. It is followed by an array of OPCITEMHEADER1s or OPCITEMHEADER2s.

Member Description

dwSize The Total size of the data stream (the header, all item
headers and all data)

dwItemCount The number of Itemheaders which follow. This will vary
depending on the number of values being reported.

hClientGroup The client provided handle for the group for which data is
being reported. This allows a single OnDataChange handler
to identify which of many possible groups are reporting
data.

dwTransactionID For normal subscriptions this is 0
For Async operations Refresh or Read this is the transaction
ID returned by the method.

hrStatus The status of the asynchronous request (including
OnDataChange). This enables error codes (e.g.
E_OUTOFMEMORY) to be returned in the case of an
asynchronous request failing in the server. A status of
S_FALSE should be returned when the read operation was
successful, but one or more items has a quality status of
BAD or UNCERTAIN.

Comment

If the hrStatus is any FAILED code then the server must return dwItemCount as 0.

There are no ITEM level HRESULT error codes returned at this time. The only item level status
information available to the callback function is the Quality Field.

 144

OPC Data Access Custom Interface Specification 2.05

4.6.4.2 OPCITEMHEADER1
typedef struct {
 OPCHANDLE hClient;
 DWORD dwValueOffset;
 WORD wQuality;
 WORD wReserved;
 FILETIME ftTimeStampItem;
} OPCITEMHEADER1;

An array of these structures appears in the stream following the GROUPHEADER for
OPCSTMFORMATDATATIME. The serialized data (in the form of Variants) appears after this array.

Member Description

hClient The client provided handle associated with this item
dwValueOffset The offset in the data stream (the global memory section) of

the serialized variant which contains the data.
wQuality The Quality bits for the data.
ftTimeStampItem The TimeStamp for the data.

4.6.4.3 OPCITEMHEADER2
typedef struct {
 OPCHANDLE hClient;
 DWORD dwValueOffset;
 WORD wQuality;
 WORD wReserved;
} OPCITEMHEADER2;

An array of these structures appears in the stream following the GROUPHEADER for
OPCSTMFORMATDATA. The serialized data (in the form of Variants) appears after this array.

Member Description

hClient The client provided handle associated with this item
dwValueOffset The offset in the data stream (the global memory section) of

the serialized variant which contains the data.
wQuality The Quality bits for the data.

 145

OPC Data Access Custom Interface Specification 2.05

4.6.4.4 OPCGROUPHEADERWRITE
typedef struct {
 DWORD dwItemCount;
 OPCHANDLE hClientGroup;
 DWORD dwTransactionID;
 HRESULT hrStatus;
} OPCGROUPHEADERWRITE;

This structure can appear at the head of the data stream. It is followed by an array of
OPCITEMHEADERWRITEs.

Member Description

dwItemCount The number of Itemheaders which follow. This will vary
depending on the number of values being reported.

hClientGroup The client provided handle for the group for which data is
being reported. This allows a single OnDataChange handler
to identify which of many possible groups are reporting
data.

dwTransactionID This is the transaction ID returned by the
IOPCAsyncIO::Write method.

hrStatus The status of the asynchronous write request. This enables
error codes (e.g. E_OUTOFMEMORY) to be returned in
the case of an asynchronous request failing in the server.

Comment

If the hrStatus is any FAILED code then the server must return dwItemCount as 0.

4.6.4.5 OPCITEMHEADERWRITE
typedef struct {
 OPCHANDLE hClient;
 HRESULT dwError;
} OPCITEMHEADERWRITE;

An array of these structures appears in the stream following the GROUPHEADERWRITE.

Member Description

hClient The client provided handle associated with this item
dwError The HRESULTs for each of the items that was written.

Comment

The item level HRESULTs for Write are the same as those returned for Sync Write.

 146

OPC Data Access Custom Interface Specification 2.05

4.6.4.6 Marshaling the Data (Variants) into the Stream
It is important that all servers which use the IDataObject interface marshal the item data into the
stream in exactly the same way since the stream itself is exposed to the client. As mentioned above,
the various GROUPHEADERs are written first without padding into the stream followed by as many
ITEMHEADERs as needed. The ITEMHEADERs must be followed by the data itself. Again the data
must be written in exactly the same way without padding by all servers. This data is always in the
form of one of the VARIANT types listed earlier. For variant types contained within the variant union
itself these are written via:

memcpy(dest, source, sizeof(tagVARIANT));

For a BSTR the union is followed without padding by an image of the BSTR. The BSTR image will
include the terminating NUL (WIDE char). Note that BSTRs contain WIDE chars which are 2 bytes
each. The BSTR starts with a DWORD byte count followed by 'count' bytes of data followed by 2
bytes of 0. Thus the total space required for the BSTR is the number of bytes specified in count + 6 (4
for the DWORD count and 2 for the trailing NUL).

For VT_ARRAY the data is the VARIANT union followed by the SAFEARRAY structure (with one
SAFEARRAYBOUND, pvData = NULL) followed by the data items themselves (the contents of the
SAFEARRAY’s HGLOBAL). Where the SAFEARRAY contains strings (BSTRs) then the
SAFEARRAY structure is followed by the BSTRs packed as noted above. Again, everything including
the data items is completely unpadded.

Currently OPC supports only a one dimensional SAFEARRAY.

Clearly any pointers in the SAFEARRAY and VARIANT unions need to be recreated by the receiver
when the data is unmarshalled and stored locally.

 147

OPC Data Access Custom Interface Specification 2.05

5 Installation Issues
It is assumed that the server vendor will provide a SETUP.EXE to install the needed components for
their server. This will not be discussed further. Other than the actual components, the main issue
affecting OLE software is management of the Windows Registry and Component Catagories. The
issues here are (a) what entries need to be made and (b) how they can be made.

Again, certain common installation and registry topics including self registration, automatic proxy/stub
registration and registry reference counting are discussed in the OPC Overview Document

5.1 Component Categories
The OPC Data Access Interface defines the following Component Catagories. Listed below are the
CATIDs, Descriptors and Symbolic Equates to be used for Data Access.

"OPC Data Access Servers Version 1.0"

CATID_OPCDAServer10 = {63D5F430-CFE4-11d1-B2C8-0060083BA1FB}

"OPC Data Access Servers Version 2.0"

CATID_OPCDAServer20 = {63D5F432-CFE4-11d1-B2C8-0060083BA1FB}

It is expected that a server will first create any category it uses and then will register for that category.
Unregistering a server should cause it to be removed from that category. See the ICatRegister
documentation for additional information.

5.2 Registry Entries for Custom Interface
The following entries are the minimum required to support the Custom Interface for OPC Compliant
Servers.

Required by all:
1. HKEY_CLASSES_ROOT\Vendor.Drivername.Version = A Description of your server

2. HKEY_CLASSES_ROOT\Vendor.Drivername.Version\CLSID = {Your Server’s unique CLSID}

3. HKEY_CLASSES_ROOT\Vendor.Drivername.Version\OPC
4. HKEY_CLASSES_ROOT\Vendor.Drivername.Version\OPC\Vendor =Your vendor name
5. HKEY_CLASSES_ROOT\CLSID\{Your Server’s unique CLSID} = A Description of your server

6. HKEY_CLASSES_ROOT\CLSID\{Your Server’s unique CLSID}\ProgID = Vendor.Drivername.Version

One or more of the following lines (inproc and/or local/remote and/or handler)

7. HKEY_CLASSES_ROOT\CLSID\{Your Server’s unique CLSID}\InprocServer32 = Full Path to DLL

8. HKEY_CLASSES_ROOT\CLSID\{YourServer’s unique CLSID}\LocalServer32 = Full Path to EXE

9. HKEY_CLASSES_ROOT\CLSID\{YourServer’s unique CLSID}\InprocHandler32 = Full Path to DLL

1. This entry simply establishes your ProgID as a subkey of the ROOT under which other subkeys
can be entered. The description (the ‘value’ of this key) may be presented to the user as the name
of an available OPC server (See example below). It should match the description in line 6.

2. The CLSID line enables the CLSIDFromProgID function to work. I.e. allows the system to open
a key given the ProgID and obtain the CLSID as the value of that key. See the example below.

 148

OPC Data Access Custom Interface Specification 2.05

3. The OPC line creates a ‘flag’ subkey that has no value. This was used for Data Access 1.0 to allow
the client to browse for the available OPC servers. As of verson 2.0, the prefered approach is for
clients and servers to use Component Catagories.

4. The Vendor line is optional. It is simply a means of identifying the vendor who supplied the
particular OPC server.

5. This line simply establishes your CLSID as a subkey off of ROOT\CLSID under which the other
subkeys can be entered. The description (the ‘value’ of this key) should be a User Friendly
description of the server. It should match Item 1 above.

6. The ProgID line enables the ProgIDFromCLSID function to work. I.e. allows the system to open
a key given the CLSID and obtain the ProgID as the value of that key. (This function is not
commonly used).

7. The InprocServer32 line or LocalServer32 line or InprocHandler32 line allows CoCreateInstance
to locate the DLL or EXE given the CLSID. The vendor should define at least one of these.

In general, self registration as described in the Microsoft documentation is recommended for both DLL
and EXE servers to simplify installation.

5.3 Registry Entries for the Proxy/Stub DLL
The proxy/stub DLL is used for marshalling interfaces to LOCAL or REMOTE servers. It is generated
directly from the IDL code and should be the same for every OPC Server. In general the Proxy/Stub
will use self registration. (Define REGISTER_PROXY_DLL during the build). Since this is
completely automatic and transparent it is not discussed further.

Also note that a prebuilt and tested proxy/stub DLL will be provided at the OPC Foundation Web site
making it unnecessary for vendors to rebuild this DLL.

Although vendors are allowed to add their own interfaces to OPC objects (as with any COM object)
they should NEVER modify the standard OPC IDL files or Proxy/Stub DLLs to include such
interfaces. Such interfaces should ALWAYS be defined in a separate vendor specific IDL file and
should be marshalled by a separate vendor specific Proxy/Stub DLL.

 149

OPC Data Access Custom Interface Specification 2.05

6 Description of Data Types, Parameters and Structures
Some structures contain ‘reserved’ words. These are generally inserted to pad structures to be 32 bit
aligned.

6.1 Item Definition
The ItemID is the fully qualified definition of a data item in the server, commonly referred to as the
WHAT. No other information is required to identify the data item for the client to be able to read/write
values.

The Item definition (ItemID) used in the OPCITEMDEF and elsewhere is a nul-terminated string that
uniquely identifies an OPC data item. The syntax of the identifier is server dependent (although it
should include only printable UNICODE characters) and it provides a reference or ‘key’ to an ‘item’ in
the data source. The item is anything that can be represented by a VARIANT although it is typically a
single value such as an analog, digital or string value.

For example, an item such as FIC101 might represent an entire record such as a Fieldbus, Hart
Foundation or ProfiBus data structure. Such behavior is specifically allowed but not required by OPC -
the return of such structures is considered to be vendor specific behavior. Alternately FIC101.PV
might represent one attribute of a record such as the process value. This would probably take the form
of a double which could be used by any client.

As an extreme example, since the syntax of the item ID is server specific, additional information such
as Counts, Engineering Units Scaling and Signal conditioning information could be embedded in the
definition string (although this is not recommended).

Examples:
A server which supports access to an existing DCS might support a simple syntax such as

 “TIC101.PV”

A server that supports low level access to a PLC might support a syntax such as

 “COM1.STATION:42.REG:40001;0,4095,-100.0,+1234.0”

 150

OPC Data Access Custom Interface Specification 2.05

6.2 AccessPath
The AccessPath is intended as a way for the client to provide to the server a suggested data path (e.g. a
particular modem or network interface). It indicates HOW to get the data.

The ITEM ID provides all of the information needed to locate and process a data item. The Access
Path is an optional piece of information that can be provided by the client. Its use is highly server
specific but it is intended to allow the client to provide a ‘recommendation’ to the server regarding
how to get to the data. As an analogy, if the ItemID represented a phone number, the access path might
represent a request to route the call via satellite (or transatlantic cable or microwave link). The call
will go through regardless of whether you specify an access path and also whether or not the server is
able to use that suggested path.

For example, suppose you wanted to access a value in an RTU and had a high speed modem on COM1
and a low speed modem on COM2. You might specify COM1 as the preferred access path. Either one
will work, but you would prefer to use COM1 if it is available for better performance.

In any case, the use of access path by both the server and the client is optional. Servers need not
provide the function and clients need not use it even if it is provided.

Servers which do not support access paths will completely ignore any passed access path (and will not
treat this as an error by the client). Also, when queried, such servers will always return a null access
path for all items (i.e. a NUL string).

 151

OPC Data Access Custom Interface Specification 2.05

6.3 Blob
We will discuss why the Blob exists and how it behaves.

The Blob is basically a scratch area for the server to associate with items in order to speed up access to
or processing of those items. The exact way in which it is used is server specific.

The idea is that clients refer to items via ASCII strings while internally, to speed up access, the server
will probably need to resolve this string into some internal server specific address; a network address, a
pointer into a table, a set of indices or files or register numbers, etc. This address resolution could take
considerable time and the resulting internal address could take an arbitrary amount of space. This Blob
allows the server to return this internal address and allows the client to save it and to provide the Blob
back to the server for future references to this item. The server could use the ‘Blob’ as a ‘hint’ to help
find the item more quickly the next time; “The Blob says that last time I looked for this tag I found it
‘here’ - so lets see if its still in that location”. However, in all cases, the ITEM ID is still the ‘key’ to
the data. Regardless of the contents of the Blob, the server needs to insure that it is in fact referencing
the item referred to by the ITEM ID.

The behavior of the Blob is as follows.

Its use by both client and server is optional. Servers which can perform ‘AddItems’ quickly based just
on the item definition should generally not return a Blob. In cases where servers do return a Blob,
clients are free to ignore these Blobs (although this will probably affect the performance of that
server).

The Blob is passed to AddItems and ValidateItems and is also returned by the server any time an
AddItems or ValidateItems or EnumItemAttributes is done. The returned Blob may differ in size and
content from the one passed.

Note that the server can update the Blob for an item at any time entirely at the server’s discretion
(including, for example, whenever the client changes an attribute of an Item).

Proper behavior of a client that wishes to support the Blob is to Enumerate the item attributes to get a
fresh copy of the Blobs for each item prior to deleting an item or group and to save that updated copy
along with the other application data related to the items.

Comment:

The difference between the server handle and the Blob is that the server handle is fixed in size
(DWORD), should not be stored between sessions by the client and that it’s implementation is required
since it is the only way to identify items after they have been added. The Blob is variable in length, is
optional and may be stored by the client between sessions.

6.4 Time Stamps
Time stamps are in the form of a FILETIME as this is more compact than other available standard time
structures. There are numerous WIN32 functions for converting between various time formats and time
zones. Time stamps are always in UTC, this form is beneficial because it is always increasing and is
unambiguous. As discussed earlier in this document, time stamps should reflect the best estimate of the
most recent time at which the corresponding value was known to be accurate. If this is not provided by
the device itself then it should be provided by the server.

 152

OPC Data Access Custom Interface Specification 2.05

6.5 Variant Data Types for OPC Data Items
Under NT 4.0 and Windows 95 with DCOM support, all VARIANT data types can be marshaled
through standard marshalling. Under Automation, types will be coerced to known Automation data
types.

NOTE

Real values in the variant (VT_R4, VT_R8) will contain IEEE floating point numbers. Note that the
IEEE standard allows certain non numeric values (called NANs) to be stored in this format. While use
of such values is rare, they are specifically allowed. If such a value is returned (in the
OPCITEMSTATE or in the DATA STREAM to the IAdviseSink) it is required that the QUALITY
flag be set to OPC_QUALITY_BAD.

 153

OPC Data Access Custom Interface Specification 2.05

6.6 Constants

6.6.1 OPCHANDLE
OPCHANDLEs are used in conjunction with both groups and items within groups. The purpose of
handles in OPC is to allow faster access to various objects by both the client and the server.

The exact internal implementation of the server handles is entirely vendor specific. The client should
never make any assumptions about the server handles and the server should never make any
assumptions about the client handles.

6.6.1.1 Group Handles
OPC groups have both a client and a server handle associated with them.

The server group handle is unique across the server and must be returned when the group is created.
The handle is then passed by the client to various methods. The server group handle can be assumed to
remain valid until the client Removes the group and free’s all of the interfaces.

It should not be persistently stored by the client as it may be different the next time the OPC group is
created.

The client group handle is provided by the client to the server. It can be any value and does not need to
be unique. It is included in the data stream sent to IAdviseSink in order to help the client identify the
source of the data.

In practice it is expected that a client will assign a unique value to it’s handle if it intends to use any of
the asynchronous functions of the OPC interfaces(including IOPCAsyncIO and
IDataObject/IAdviseSink interfaces), since this is the only key to the information that the server gives
back to the client via the IAdviseSink interface.

6.6.1.2 Item Handles
OPC items have both a client and a server handle associated with them.

The server item handle is unique within the group and will be returned when the item is created. It is
then passed by the client to various methods. The server item handle can be assumed to remain valid
until the client Removes the items or Removes the Group containing the items.

It should not be persistently stored by the client as it may be different the next time the OPC Item is
created.

The client item handle is provided by the client to the server. It can be any value and does not need to
be unique. It is included in the data stream sent to IAdviseSink in order to help the client quickly
identify which object in the client application is affected by the changed data.

In practice however it is expected that a client will assign unique values it’s handles if it intends to use
any of the asynchronous functions of the OPC interfaces (including IOPCAsyncIO and
IDataObject/IAdviseSink interfaces), since this is the only key to the information that the server gives
back to the client via the IAdviseSink interface.

 154

OPC Data Access Custom Interface Specification 2.05

6.7 Structures and Masks

6.7.1 OPCITEMSTATE
This structure is used by IOPCSyncIO::Read

typedef struct {
 OPCHANDLE hClient;
 FILETIME ftTimeStamp;
 WORD wQuality;
 WORD wReserved;
 VARIANT vDataValue;
} OPCITEMSTATE;

Member Description

hClient the client provided handle for this item

ftTimeStamp UTC TimeStamp for this item's value. If the device cannot
provide a timestamp then the server should provide one.

wQuality The quality of this item.
vDataValue The value itself as a variant.

Comments

The Client should call VariantClear() to free any memory associated with the Variant.

Real values in the variant (VT_R4, VT_R8) will contain IEEE floating point numbers. Note that the
IEEE standard allows certain non numeric values (called NANs) to be stored in this format. While use
of such values is rare, they are specifically allowed. If such a value is returned it is required that the
QUALITY flag be set to OPC_QUALITY_BAD.

 155

OPC Data Access Custom Interface Specification 2.05

6.7.2 OPCITEMDEF
typedef struct {
 [string] LPWSTR szAccessPath;
 [string] LPWSTR szItemID;
 BOOL bActive ;
 OPCHANDLE hClient;
 DWORD dwBlobSize;
 [size_is(dwBlobSize)] BYTE * pBlob;
 VARTYPE vtRequestedDataType;
 WORD wReserved;
} OPCITEMDEF;

This structure is used by IOPCItemMgt::AddItems and ValidateItems. The ‘used by’ column below
indicates which of these two functions use each member.

Member Used by Description

szAccessPath both The access path the server should associate with
this item. By convention a pointer to a NUL string
specifies that the server should select the access
path. Support for accesspath is optional
NOTE: version 1 indicated that a NULL pointer
would allow the server to pick the path however
passing a NULL pointer will cause a fault in the
proxy/stub code and thus is not allowed.

szItemID both A null-terminated string that uniquely identifies
the OPC data item. See the Item ID discussion and
the AddItems function for specific information
about the contents of this field.

bActive add This Boolean value affects the behavior various
methods as described elsewhere in this
specification.

hClient add The handle the client wishes to associate with the
item. See the OPCHANDLE for more specific
information about the contents of this field.

dwBlobSize both The size of the pBlob for this item.

pBlob both pBlob is a pointer to the Blob.

vtRequestedDataType both The data type requested by the client. An error is
returned (See Additems or ValidateItems) if the
server cannot provide the item in this format.
Passing VT_EMPTY means the client will accept
the servers canonical datatype.

Comments

Regarding the datatype; often the same value can be returned in more than one format. For example, a
numeric value might be returned as text (VT_BSTR) or real (VT_R8). Such conversions are typically
handled in the server by VariantChangeType(). Similarly a status (SCAN status, AUTO/MAN, Alarm,
etc.) might be returned as an integer (VT_I4) to be used in animation or color selection or as a string (
VT_BSTR) to be shown directly to the user. This second case is also known as an enumeration and
would be vendor specific. Client vendors should note that this specification does not specify what
enumeration’s exist or how a server maps the values into strings. Server vendors are strongly
encouraged to follow a standard such as FIELDBUS in this area. See IEnumOPCItemAttributes for
more information on this topic.

 156

OPC Data Access Custom Interface Specification 2.05

6.7.3 OPCITEMRESULT
typedef struct {
 OPCHANDLE hServer;
 VARTYPE vtCanonicalDataType;
 WORD wReserved;
 DWORD dwAccessRights;
 DWORD dwBlobSize;
 [size_is(dwBlobSize)] BYTE * pBlob;
} OPCITEMRESULT;

This structure is used by IOPCItemMgt::AddItems() and ValidateItems().

Member Used by Description

hServer add The server handle used to refer to this item.
vtCanonicalDataType both The native data type. The type of data maintained

within the server for this item.
dwAccessRights both Indicates if this item is read only, write only or

read/write. This is NOT related to security but rather
to the nature of the underlying hardware. See the
Access Rights section below.

dwBlobSize both The size of the Blob for this item. Note that this size
may be 0 for servers that do not support or require
this feature.

pBlob both Pointer to the Blob.

Comments

For AddItems pBlob will always be returned by servers which support this feature. For ValidateItems
it will only be returned if the dwBlobUpdate parameter to ValidateItems is TRUE.

The client software must free the memory for the Blob before freeing the OPCITEMRESULT
structure.

 157

OPC Data Access Custom Interface Specification 2.05

6.7.4 OPCITEMATTRIBUTES
typedef struct {
 [string] LPWSTR szAccessPath;
 [string] LPWSTR szItemID;
 BOOL bActive;
 OPCHANDLE hClient;
 OPCHANDLE hServer;
 DWORD dwAccessRights;
 DWORD dwBlobSize;
 [size_is(dwBlobSize)] BYTE * pBlob;
 VARTYPE vtRequestedDataType;
 VARTYPE vtCanonicalDataType;
 OPCEUTYPE dwEUType;
 VARIANT vEUInfo;
} OPCITEMATTRIBUTES;

Member Description

szAccessPath The access path specified by the client. A pointer to a NUL
string is returned if the server does not support access paths.

szItemID The unique identifier for this item.
bActive FALSE if the item is not currently active, TRUE if the item

is currently active
hClient The handle the client has associated with this item.
hServer The handle the server uses to reference this item.
dwAccessRights Indicates if this item is read only, write only or read/write.

This is NOT related to security but rather to the nature of
the underlying hardware. See the Access Rights section
below.

dwBlobSize The size of the pBlob for this item. Note that this size may
be 0 for servers that do not support or require this feature.

pBlob Pointer to the Blob.
vtRequestedDataType The data type in which the item's value will be returned.

Note that if the requested data type was rejected then this
field will return the canonical data type.

vtCanonicalDataType The data type in which the item's value is maintained
within the server.

dwEUType Indicate the type of Engineering Units (EU) information (if
any) contained in vEUInfo.
0 - No EU information available (vEUInfo will be
VT_EMPTY)
1 - Analog - vEUInfo will contain a SAFEARRAY of
exactly two doubles (VT_ARRAY | VT_R8) corresponding
to the LOW and HI EU range.
2 - Enumerated - vEUInfo will contain a SAFEARRAY of
strings (VT_ARRAY | VT_BSTR) which contains a list of
strings (Example: “OPEN”, “CLOSE”, “IN TRANSIT”,
etc.) corresponding to sequential numeric values (0, 1, 2,
etc.)

vEUInfo The VARIANT containing the EU information. See
Comments below.

 158

OPC Data Access Custom Interface Specification 2.05

Comment:

The EU support is optional. Servers which do not support this will always return EUType as 0 and
EUInfo as VT_EMPTY. EU information (analog or enumerated) can be returned for any value where
the canonical type is any of: VT_I2, I4, R4, R8, BOOL, UI1 although in practice some combinations
are clearly more likely than others. Where the item contains an array of values (VT_ARRAY) the EU
information will apply to all items in the array (just as the Requested and Canonical Data types apply
to all items in the array).

EU information is provided by the server to the client and is essentially Read Only. OPC Does not
provide the client with any control over the EU settings.

For analog EU the information returned represents the ‘usual’ range of the item value. Sensor or
instrument failure or deactivation can result in a returned item value which is actually outside this
range. Client software must be prepared to deal with this. Similarly a client may attempt to write a
value which is outside this range back to the server. The exact behavior (accept, reject, clamp, etc.) in
this case is server dependent however in general servers must be prepared to handle this.

For enumerated EU the information returned represents ‘string lookup table’ corresponding to
sequential integer values starting with 0. The number of values represented is determined by the size
of the SAFEARRAY. Again, robust clients should be prepared to handle item values outside the range
of the list and robust servers should be prepared to handle writes of illegal values.

Servers may optionally support Localization of the enumeration. In this case the server should use the
current locale ID of the group. See IOPCServer::AddGroup and IOPCGroupStateMgt::GetState and
SetState.

The client is responsible for freeing the VARIANTs in the OPCITEMATTRIBUTES structure
including all elements of any SAFEARRAYs.

Client writers may wish to create and use a common function such as
FreeOPCITEMATTRIBUTES(ptr) in order to minimize the chance of memory leaks.

 159

OPC Data Access Custom Interface Specification 2.05

6.7.5 OPCSERVERSTATUS
typedef struct {
 FILETIME ftStartTime;
 FILETIME ftCurrentTime;
 FILETIME ftLastUpdateTime;
 OPCSERVERSTATE dwServerState;
 DWORD dwGroupCount;
 DWORD dwBandWidth;
 WORD wMajorVersion;
 WORD wMinorVersion;
 WORD wBuildNumber;
 WORD wReserved;
 [string] LPWSTR szVendorInfo;
} OPCSERVERSTATUS;

This structure used to communicate the status of the server to the client. This information is provided by
the server in the IOPCServer::GetStatus() call.

Member Description

ftStartTime Time (UTC) the server was started. This is constant for the
server instance and is not reset when the server changes
states. Each instance of a server should keep the time when
the process started.

ftCurrentTime The current time (UTC) as known by the server.
ftLastUpdateTime The time (UTC) the server sent the last data value update to

this client. This value is maintained on an instance basis.
dwServerState The current status of the server. Refer to OPC Server

State values below.
dwGroupCount The total number of groups (all public and private) being

managed by the server. This is mainly for diagnostic
purposes.

dwBandWidth The behavior of this field is server specific. A suggested
use is that it return the approximate Percent of Bandwidth
currently in use by server. If multiple links are in use it
could return the ‘worst case’ link. Note that any value over
100% indicates that the aggregate combination of items and
UpdateRate is too high. The server may also return
0xFFFFFFFF if this value is unknown.

wMajorVersion The major version of the server software
wMinorVersion The minor version of the server software
wBuildNumber The ‘build number’ of the server software
szVendorInfo Vendor specific string providing additional information

about the server. It is recommended that this mention the
name of the company and the type of device(s) supported.

 160

OPC Data Access Custom Interface Specification 2.05

OPCSERVERSTATE Values Description

OPC_STATUS_RUNNING The server is running normally. This is the usual state for a
server

OPC_STATUS_FAILED A vendor specific fatal error has occurred within the server.
The server is no longer functioning. The recovery
procedure from this situation is vendor specific. An error
code of E_FAIL should generally be returned from any
other server method.

OPC_STATUS_NOCONFIG The server is running but has no configuration information
loaded and thus cannot function normally. Note this state
implies that the server needs configuration information in
order to function. Servers which do not require
configuration information should not return this state.

OPC_STATUS_SUSPENDED The server has been temporarily suspended via some
vendor specific method and is not getting or sending data.
Note that Quality will be returned as
OPC_QUALITY_OUT_OF_SERVICE.

OPC_STATUS_TEST The server is in Test Mode. The outputs are disconnected
from the real hardware but the server will otherwise behave
normally. Inputs may be real or may be simulated
depending on the vendor implementation. Quality will
generally be returned normally.

6.7.6 Access Rights
This represents the server's ability to access a single OPC data item. Note the low 16 bits of the
DWORD are reserved for OPC use and currently include the OPC Access Rights defined in the IDL
and described below. The high 16 bits of the DWORD are available for vendor specific use.

The OPC_READABLE and OPC_WRITABLE bits are intended to indicate whether the Item is
inherently readable or writable. For example a value representing a physical input would generally be
readable but not writeable. A value representing a physical output or an adjustable parameter such as a
setpoint or alarm limit would generally be readable and writable. It is possible that a value representing
a physical output with no readback capability might be marked writable but not readable. It is
recommended that Client applications use this information only as something to be viewed by the user.
Attempts by the user to read or write a value should always be passed by the client program to the
server regardless of the access rights that were returned when the item was added. The Server can
return E_BADRIGHTS if needed.

Also, the returned Access Rights value is not related to security issues. It is expected that a server
implementing security would validate any reads or writes for the currently logged in user as they
occurred and in case of a problem would return an appropriate vendor specific HRESULT in response
to that read or write.

AccessRights Values Description

OPC_READABLE The client can read the data item's value.

OPC_WRITEABLE The client can change the data item's value.

 161

OPC Data Access Custom Interface Specification 2.05

6.8 OPC Quality flags
These flags represent the quality state for a item's data value. This is intended to be similar to but
slightly simpler than the Fieldbus Data Quality Specification (section 4.4.1 in the H1 Final
Specifications). This design makes it fairly easy for both servers and client applications to determine
how much functionality they want to implement.

The low 8 bits of the Quality flags are currently defined in the form of three bit fields; Quality,
Substatus and Limit status. The 8 Quality bits are arranged as follows:

 QQSSSSLL

The high 8 bits of the Quality Word are available for vendor specific use. If these bits are used, the
standard OPC Quality bits must still be set as accurately as possible to indicate what assumptions the
client can make about the returned data. In addition it is the responsibility of any client interpreting
vendor specific quality information to insure that the server providing it uses the same ‘rules’ as the
client. The details of such a negotiation are not specified in this standard although a QueryInterface
call to the server for a vendor specific interface such as IMyQualityDefinitions is a possible approach.

Details of the OPC standard quality bits follow:

The Quality BitField

QQ BIT VALUE DEFINE DESCRIPTION

0 00SSSSLL Bad Value is not useful for reasons indicated by
the Substatus.

1 01SSSSLL Uncertain The quality of the value is uncertain for
reasons indicated by the Substatus.

2 10SSSSLL N/A Not used by OPC

3 11SSSSLL Good The Quality of the value is Good.

Comment:

A server which supports no quality information must return 3 (Good). It is also acceptable for a server
to simply return Bad or Good (0x00 or 0xC0) and to always return 0 for Substatus and limit.

It is recommended that clients minimally check the Quality Bit field of all results (even if they do not
check the substatus or limit fields).

Even when a ‘BAD’ value is indicated, the contents of the value field must still be a well defined
VARIANT even though it does not contain an accurate value. This is to simplify error handling in
client applications. For example, clients are always expected to call VariantClear() on the results of a
Sychronous Read. Similarly the IAdviseSink needs to be able to interpret and ‘unpack’ the Value and
Data included in the Stream even if that data is BAD.

If the server has no known value to return then some reasonable default should be returned such as a
NUL string or a 0 numeric value.

 162

OPC Data Access Custom Interface Specification 2.05

The Substatus BitField

The layout of this field depends on the value of the Quality Field.

Substatus for BAD Quality:

SSSS BIT VALUE DEFINE DESCRIPTION

0 000000LL Non-specific The value is bad but no specific reason is
known

1 000001LL Configuration Error There is some server specific problem with the
configuration. For example the item is question
has been deleted from the configuration.

2 000010LL Not Connected The input is required to be logically connected
to something but is not. This quality may
reflect that no value is available at this time,
for reasons like the value may have not been
provided by the data source.

3 000011LL Device Failure A device failure has been detected

4 000100LL Sensor Failure A sensor failure had been detected (the
’Limits’ field can provide additional diagnostic
information in some situations.)

5 000101LL Last Known Value Communications have failed. However, the last
known value is available. Note that the ‘age’ of
the value may be determined from the
TIMESTAMP in the OPCITEMSTATE.

6 000110LL Comm Failure Communications have failed. There is no last
known value is available.

7 000111LL Out of Service The block is off scan or otherwise locked This
quality is also used when the active state of the
item or the group containing the item is
InActive.

8-15 N/A Not used by OPC

Comment

Servers which do not support Substatus should return 0. Note that an ‘old’ value may be returned with
the Quality set to BAD (0) and the Substatus set to 5. This is for consistency with the Fieldbus
Specification. This is the only case in which a client may assume that a ‘BAD’ value is still usable by
the application.

 163

OPC Data Access Custom Interface Specification 2.05

Substatus for UNCERTAIN Quality:

SSSS BIT VALUE DEFINE DESCRIPTION

0 010000LL Non-specific There is no specific reason why the value is
uncertain.

1 010001LL Last Usable Value Whatever was writing this value has stopped
doing so. The returned value should be
regarded as ‘stale’. Note that this differs from a
BAD value with Substatus 5 (Last Known
Value). That status is associated specifically
with a detectable communications error on a
‘fetched’ value. This error is associated with
the failure of some external source to ‘put’
something into the value within an acceptable
period of time. Note that the ‘age’ of the value
can be determined from the TIMESTAMP in
OPCITEMSTATE.

2-3 N/A Not used by OPC

4 010100LL Sensor Not Accurate Either the value has ‘pegged’ at one of the
sensor limits (in which case the limit field
should be set to 1 or 2) or the sensor is
otherwise known to be out of calibration via
some form of internal diagnostics (in which
case the limit field should be 0).

5 010101LL Engineering Units
Exceeded

The returned value is outside the limits defined
for this parameter. Note that in this case (per
the Fieldbus Specification) the ‘Limits’ field
indicates which limit has been exceeded but
does NOT necessarily imply that the value
cannot move farther out of range.

6 010110LL Sub-Normal The value is derived from multiple sources and
has less than the required number of Good
sources.

7-15 N/A Not used by OPC

Comment

Servers which do not support Substatus should return 0.

 164

OPC Data Access Custom Interface Specification 2.05

Substatus for GOOD Quality:

SSSS BIT VALUE DEFINE DESCRIPTION

0 110000LL Non-specific The value is good. There are no special
conditions

1-5 N/A Not used by OPC

6 110110LL Local Override The value has been Overridden. Typically this
is means the input has been disconnected and a
manually entered value has been ‘forced’.

7-15 N/A Not used by OPC

Comment

Servers which do not support Substatus should return 0.

The Limit BitField

The Limit Field is valid regardless of the Quality and Substatus. In some cases such as Sensor Failure
it can provide useful diagnostic information.

LL BIT VALUE DEFINE DESCRIPTION

0 QQSSSS00 Not Limited The value is free to move up or down

1 QQSSSS01 Low Limited The value has ‘pegged’ at some lower limit

2 QQSSSS10 High Limited The value has ‘pegged’ at some high limit.

3 QQSSSS11 Constant The value is a constant and cannot move.

Comment

Servers which do not support Limit should return 0.

Symbolic Equates are defined for values and masks for these BitFields in the “QUALITY” section of
the OPC header files.

 165

OPC Data Access Custom Interface Specification 2.05

7 Summary of OPC Error Codes

We have attempted to minimize the number of unique errors by identifying common generic problems
and defining error codes that can be reused in many contexts. An OPC server should only return those
OPC errors that are listed for the various methods in this specification or are standard Microsoft errors.
Note that OLE itself will frequently return errors (such as RPC errors) in addition to those listed in this
specification.

The most important thing for a client is to check FAILED for any error return. Other than that, (the
statements above not withstanding) a robust, user friendly client should assume that the server may
return any error code and should call the GetErrorString function to provide user readable information
about those errors.

Standard COM errors that are
commonly used by OPC Servers

Description

E_FAIL Unspecified error
E_INVALIDARG The value of one or more parameters was not valid. This is

generally used in place of a more specific error where it is expected
that problems are unlikely or will be easy to identify (for example
when there is only one parameter).

E_NOINTERFACE No such interface supported
E_NOTIMPL Not implemented
E_OUTOFMEMORY Not enough memory to complete the requested operation. This can

happen any time the server needs to allocate memory to complete
the requested operation.

CONNECT_E_ADVISELIMIT Advise limit exceeded for this object
OLE_E_NOCONNECTION Cannot Unadvise - there is no existing connection
DV_E_FORMATETC Invalid or unregistered Format specified in FORMATETC

 166

OPC Data Access Custom Interface Specification 2.05

OPC Specific Errors Description

OPC_E_BADRIGHTS The Items AccessRights do not allow the operation.

OPC_E_BADTYPE The server cannot convert the data between the specified format/
requested data type and the canonical data type.

OPC_E_DUPLICATENAME Duplicate name not allowed.

OPC_E_INVALIDCONFIGFILE The server's configuration file is an invalid format.

OPC_E_INVALIDFILTER The filter string was not valid

OPC_E_INVALIDHANDLE The value of the handle is invalid. Note: a client should never pass
an invalid handle to a server. If this error occurs, it is due to a
programming error in the client or possibly in the server.

OPC_E_INVALIDITEMID The item ID doesn't conform to the server's syntax.

OPC_E_INVALID_PID The passed property ID is not valid for the item.

OPC_E_NOTFOUND Requested Object (e.g. a public group) was not found.

OPC_E_PUBLIC The requested operation cannot be done on a public group.

OPC_E_RANGE The value was out of range.

OPC_E_UNKNOWNITEMID The item ID is not defined in the server address space (on add or
validate) or no longer exists in the server address space (for read or
write).

OPC_E_UNKNOWNPATH The item's access path is not known to the server.

OPC_S_CLAMP A value passed to WRITE was accepted but the output was
clamped.

OPC_S_INUSE The operation cannot be performed because the object is bering
referenced.

OPC_S_UNSUPPORTEDRATE The server does not support the requested data rate but will use the
closest available rate.

You will see in the appendix that these error codes use ITF_FACILITY. This means that they are context
specific (i.e. OPC specific). The calling application should check first with the server providing the error
(i.e. call GetErrorString).

Error codes (the low order word of the HRESULT) from 0000 to 0200 are reserved for Microsoft use
(although some were inadverdantly used for OPC 1.0 errors). Codes from 0200 through 7FFF are reserved
for future OPC use. Codes from 8000 through FFFF can be vendor specific.

 167

OPC Data Access Custom Interface Specification 2.05

 168

//

8 Appendix A - OPCError.h
/*++
Module Name:
 OpcError.h
Author:
OPC Task Force

Revision History:
Release 1.0A
 Removed Unused messages
 Added OPC_S_INUSE, OPC_E_INVALIDCONFIGFILE, OPC_E_NOTFOUND
Release 2.0
 Added OPC_E_INVALID_PID
--*/

/*
Code Assignements:
 0000 to 0200 are reserved for Microsoft use
 (although some were inadverdantly used for OPC 1.0 errors).
 0200 to 7FFF are reserved for future OPC use.
 8000 to FFFF can be vendor specific.

*/

#ifndef __OPCERROR_H
#define __OPCERROR_H

//
// Values are 32 bit values laid out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +---+-+-+-----------------------+-------------------------------+
// |Sev|C|R| Facility | Code |
// +---+-+-+-----------------------+-------------------------------+
//
// where
//
// Sev - is the severity code
//
// 00 - Success
// 01 - Informational
// 10 - Warning
// 11 - Error
//
// C - is the Customer code flag
//
// R - is a reserved bit
//
// Facility - is the facility code
//
// Code - is the facility's status code
//

OPC Data Access Custom Interface Specification 2.05

 169

#define OPC_E_INVALIDITEMID ((HRESULT)0xC0040008L)

//
// MessageId: OPC_E_INVALIDHANDLE
//
// MessageText:
//
// The value of the handle is invalid.
//
#define OPC_E_INVALIDHANDLE ((HRESULT)0xC0040001L)

//
// MessageId: OPC_E_BADTYPE
//
// MessageText:
//
// The server cannot convert the data between the
// requested data type and the canonical data type.
//
#define OPC_E_BADTYPE ((HRESULT)0xC0040004L)

//
// MessageId: OPC_E_PUBLIC
//
// MessageText:
//
// The requested operation cannot be done on a public group.
//
//
#define OPC_E_PUBLIC ((HRESULT)0xC0040005L)

//
// MessageId: OPC_E_BADRIGHTS
//
// MessageText:
//
// The Items AccessRights do not allow the operation.
//
#define OPC_E_BADRIGHTS ((HRESULT)0xC0040006L)

//
// MessageId: OPC_E_UNKNOWNITEMID
//
// MessageText:
//
// The item is no longer available in the server address space
//
//
#define OPC_E_UNKNOWNITEMID ((HRESULT)0xC0040007L)

//
// MessageId: OPC_E_INVALIDITEMID
//
// MessageText:
//
// The item definition doesn't conform to the server's syntax.
//

OPC Data Access Custom Interface Specification 2.05

 170

// MessageText:
//

//
// MessageId: OPC_E_INVALIDFILTER
//
// MessageText:
//
// The filter string was not valid
//
#define OPC_E_INVALIDFILTER ((HRESULT)0xC0040009L)

//
// MessageId: OPC_E_UNKNOWNPATH
//
// MessageText:
//
// The item's access path is not known to the server.
//
//
#define OPC_E_UNKNOWNPATH ((HRESULT)0xC004000AL)

//
// MessageId: OPC_E_RANGE
//
// MessageText:
//
// The value was out of range.
//
//
#define OPC_E_RANGE ((HRESULT)0xC004000BL)

//
// MessageId: OPC_E_DUPLICATENAME
//
// MessageText:
//
// Duplicate name not allowed.
//
//
#define OPC_E_DUPLICATENAME ((HRESULT)0xC004000CL)

//
// MessageId: OPC_S_UNSUPPORTEDRATE
//
// MessageText:
//
// The server does not support the requested data rate
// but will use the closest available rate.
//
//
#define OPC_S_UNSUPPORTEDRATE ((HRESULT)0x0004000DL)

//
// MessageId: OPC_S_CLAMP
//

OPC Data Access Custom Interface Specification 2.05

// A value passed to WRITE was accepted but the output was clamped.
//
#define OPC_S_CLAMP ((HRESULT)0x0004000EL)

//
// MessageId: OPC_S_INUSE
//
// MessageText:
//
// The operation cannot be completed because the
// object still has references that exist.
//
//
#define OPC_S_INUSE ((HRESULT)0x0004000FL)

//
// MessageId: OPC_E_INVALIDCONFIGFILE
//
// MessageText:
//
// The server's configuration file is an invalid format.
//
#define OPC_E_INVALIDCONFIGFILE ((HRESULT)0xC0040010L)

//
// MessageId: OPC_E_NOTFOUND
//
// MessageText:
//
// The server could not locate the requested object.
//
#define OPC_E_NOTFOUND ((HRESULT)0xC0040011L)

//
// MessageId: OPC_E_INVALID_PID
//
// MessageText:
//
// The server does not recognise the passed property ID.
//
#define OPC_E_INVALID_PID ((HRESULT)0xC0040203L)

#endif // OpcError

 171

OPC Data Access Custom Interface Specification 2.05

 172

typedef enum tagOPCEUTYPE {

9 Appendix B - Data Access IDL Specification
The current files require MIDL compiler 3.00.15 or later and the WIN NT 4.0 release SDK.

Use the command line MIDL //Oicf opcda.idl.

The resulting OPCDA.H file should be included in all clients and servers.

The resulting OPCDA_I.C file defines the interface IDs and should be linked into all clients and
servers.

NOTE: This IDL file and the Proxy/Stub generated from it should NEVER be
modified in any way. If you add vendor specific interfaces to your server (which
is allowed) you must generate a SEPARATE vendor specific IDL file to describe
only those interfaces and a separate vendor specific ProxyStub DLL to marshall
only those interfaces.

Note: See the OPC Overview document (OPCOVW.DOC) for a listing and disucssion of
OPCCOMN.IDL.

// OPCDA.IDL
// REVISION: 6/17/98 04:00 PM (EST)
// VERSIONINFO 2.0.0.0
// 12/05/97 acc fixed UNCERTAIN bits, add AsyncIO2, OPCDataCallback,
// OPCItemProperties, BROWSE_TO
// 06/19/98 acc change V2 uuids prior to final release
// to avoid conflict with 'old' OPCDA Automation uuids
// Change name of 3 methods on AsyncIO2 to
// Cancel2,SetEnable,GetEnable to eliminate conflicts
//

import "oaidl.idl" ;

typedef enum tagOPCDATASOURCE {
 OPC_DS_CACHE = 1,
 OPC_DS_DEVICE } OPCDATASOURCE ;

typedef enum tagOPCBROWSETYPE {
 OPC_BRANCH = 1,
 OPC_LEAF,
 OPC_FLAT} OPCBROWSETYPE;

typedef enum tagOPCNAMESPACETYPE {
 OPC_NS_HIERARCHIAL = 1,
 OPC_NS_FLAT} OPCNAMESPACETYPE;

typedef enum tagOPCBROWSEDIRECTION {
 OPC_BROWSE_UP = 1,
 OPC_BROWSE_DOWN, OPC_BROWSE_TO} OPCBROWSEDIRECTION;

// **NOTE** the 1.0 IDL contained an error for ACCESSRIGHTS.
// They should not have been an ENUM.
// They should have been two mask bits as noted here.
cpp_quote("#define OPC_READABLE 1")
cpp_quote("#define OPC_WRITEABLE 2")

OPC Data Access Custom Interface Specification 2.05

 173

typedef struct tagOPCITEMSTATE{
 OPCHANDLE hClient;

 OPC_NOENUM = 0,
 OPC_ANALOG,
 OPC_ENUMERATED } OPCEUTYPE;

typedef enum tagOPCSERVERSTATE {
 OPC_STATUS_RUNNING = 1,
 OPC_STATUS_FAILED,
 OPC_STATUS_NOCONFIG,
 OPC_STATUS_SUSPENDED,
 OPC_STATUS_TEST } OPCSERVERSTATE;

typedef enum tagOPCENUMSCOPE { OPC_ENUM_PRIVATE_CONNECTIONS = 1,
 OPC_ENUM_PUBLIC_CONNECTIONS,
 OPC_ENUM_ALL_CONNECTIONS,
 OPC_ENUM_PRIVATE,
 OPC_ENUM_PUBLIC,
 OPC_ENUM_ALL } OPCENUMSCOPE;

typedef DWORD OPCHANDLE;

typedef struct tagOPCGROUPHEADER {
 DWORD dwSize;
 DWORD dwItemCount;
 OPCHANDLE hClientGroup;
 DWORD dwTransactionID;
 HRESULT hrStatus;
} OPCGROUPHEADER;

typedef struct tagOPCITEMHEADER1 {
 OPCHANDLE hClient;
 DWORD dwValueOffset;
 WORD wQuality;
 WORD wReserved;
 FILETIME ftTimeStampItem;
} OPCITEMHEADER1;

typedef struct tagOPCITEMHEADER2 {
 OPCHANDLE hClient;
 DWORD dwValueOffset;
 WORD wQuality;
 WORD wReserved;
} OPCITEMHEADER2;

typedef struct tagOPCGROUPHEADERWRITE {
 DWORD dwItemCount;
 OPCHANDLE hClientGroup;
 DWORD dwTransactionID;
 HRESULT hrStatus;
} OPCGROUPHEADERWRITE;

typedef struct tagOPCITEMHEADERWRITE {
 OPCHANDLE hClient;
 HRESULT dwError;
} OPCITEMHEADERWRITE;

OPC Data Access Custom Interface Specification 2.05

 174

//**

 FILETIME ftTimeStamp;
 WORD wQuality;
 WORD wReserved;
 VARIANT vDataValue;
} OPCITEMSTATE;

typedef struct tagOPCSERVERSTATUS {
 FILETIME ftStartTime;
 FILETIME ftCurrentTime;
 FILETIME ftLastUpdateTime;
 OPCSERVERSTATE dwServerState;
 DWORD dwGroupCount;
 DWORD dwBandWidth;
 WORD wMajorVersion;
 WORD wMinorVersion;
 WORD wBuildNumber;
 WORD wReserved;
 [string] LPWSTR szVendorInfo;
} OPCSERVERSTATUS;

typedef struct tagOPCITEMDEF {
 [string] LPWSTR szAccessPath;
 [string] LPWSTR szItemID;
 BOOL bActive ;
 OPCHANDLE hClient;
 DWORD dwBlobSize;
 [size_is(dwBlobSize)] BYTE * pBlob;
 VARTYPE vtRequestedDataType;
 WORD wReserved;
} OPCITEMDEF;

typedef struct tagOPCITEMATTRIBUTES {
 [string] LPWSTR szAccessPath;
 [string] LPWSTR szItemID;
 BOOL bActive;
 OPCHANDLE hClient;
 OPCHANDLE hServer;
 DWORD dwAccessRights;
 DWORD dwBlobSize;
 [size_is(dwBlobSize)] BYTE * pBlob;
 VARTYPE vtRequestedDataType;
 VARTYPE vtCanonicalDataType;
 OPCEUTYPE dwEUType;
 VARIANT vEUInfo;
} OPCITEMATTRIBUTES;

typedef struct tagOPCITEMRESULT {
 OPCHANDLE hServer;
 VARTYPE vtCanonicalDataType;
 WORD wReserved;
 DWORD dwAccessRights;
 DWORD dwBlobSize;
 [size_is(dwBlobSize)] BYTE * pBlob;
} OPCITEMRESULT;

OPC Data Access Custom Interface Specification 2.05

 175

 HRESULT AddGroup(
 [in, string] LPCWSTR szName,

// OPC Quality flags
//
// Masks for extracting quality subfields
// (note 'status' mask also includes 'Quality' bits)
//
cpp_quote("#define OPC_QUALITY_MASK 0xC0")
cpp_quote("#define OPC_STATUS_MASK 0xFC")
cpp_quote("#define OPC_LIMIT_MASK 0x03")

// Values for QUALITY_MASK bit field
//
cpp_quote("#define OPC_QUALITY_BAD 0x00")
cpp_quote("#define OPC_QUALITY_UNCERTAIN 0x40")
cpp_quote("#define OPC_QUALITY_GOOD 0xC0")

// STATUS_MASK Values for Quality = BAD
//
cpp_quote("#define OPC_QUALITY_CONFIG_ERROR 0x04")
cpp_quote("#define OPC_QUALITY_NOT_CONNECTED 0x08")
cpp_quote("#define OPC_QUALITY_DEVICE_FAILURE 0x0c")
cpp_quote("#define OPC_QUALITY_SENSOR_FAILURE 0x10")
cpp_quote("#define OPC_QUALITY_LAST_KNOWN 0x14")
cpp_quote("#define OPC_QUALITY_COMM_FAILURE 0x18")
cpp_quote("#define OPC_QUALITY_OUT_OF_SERVICE 0x1C")

// STATUS_MASK Values for Quality = UNCERTAIN
//
cpp_quote("#define OPC_QUALITY_LAST_USABLE 0x44")
cpp_quote("#define OPC_QUALITY_SENSOR_CAL 0x50")
cpp_quote("#define OPC_QUALITY_EGU_EXCEEDED 0x54")
cpp_quote("#define OPC_QUALITY_SUB_NORMAL 0x58")

// STATUS_MASK Values for Quality = GOOD
//
cpp_quote("#define OPC_QUALITY_LOCAL_OVERRIDE 0xD8")

// Values for Limit Bitfield
//
cpp_quote("#define OPC_LIMIT_OK 0x00")
cpp_quote("#define OPC_LIMIT_LOW 0x01")
cpp_quote("#define OPC_LIMIT_HIGH 0x02")
cpp_quote("#define OPC_LIMIT_CONST 0x03")

//**
//Interface Definitions
//
//**
[
 object,
 uuid(39c13a4d-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCServer : IUnknown
{

OPC Data Access Custom Interface Specification 2.05

 176

 HRESULT RemovePublicGroup(
 [in] OPCHANDLE hServerGroup,

 [in] BOOL bActive,
 [in] DWORD dwRequestedUpdateRate,
 [in] OPCHANDLE hClientGroup,
 [unique, in] LONG * pTimeBias,
 [unique, in] FLOAT * pPercentDeadband,
 [in] DWORD dwLCID,
 [out] OPCHANDLE * phServerGroup,
 [out] DWORD * pRevisedUpdateRate,
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk
);

 HRESULT GetErrorString(
 [in] HRESULT dwError,
 [in] LCID dwLocale,
 [out, string] LPWSTR * ppString
);

 HRESULT GetGroupByName(
 [in, string] LPCWSTR szName,
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk
);

 HRESULT GetStatus(
 [out] OPCSERVERSTATUS ** ppServerStatus
);

 HRESULT RemoveGroup(
 [in] OPCHANDLE hServerGroup,
 [in] BOOL bForce
);

 HRESULT CreateGroupEnumerator(
 [in] OPCENUMSCOPE dwScope,
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN* ppUnk
);

}

//**
[
 object,
 uuid(39c13a4e-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCServerPublicGroups : IUnknown
{
 HRESULT GetPublicGroupByName(
 [in, string] LPCWSTR szName,
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk
);

OPC Data Access Custom Interface Specification 2.05

 177

 [out] LONG * pTimeBias,
 [out] FLOAT * pPercentDeadband,

 [in] BOOL bForce
);
}

//**
[
 object,
 uuid(39c13a4f-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCBrowseServerAddressSpace: IUnknown
{
 HRESULT QueryOrganization(
 [out] OPCNAMESPACETYPE * pNameSpaceType
);

 HRESULT ChangeBrowsePosition(
 [in] OPCBROWSEDIRECTION dwBrowseDirection,
 [in, string] LPCWSTR szString
);

 HRESULT BrowseOPCItemIDs(
 [in] OPCBROWSETYPE dwBrowseFilterType,
 [in, string] LPCWSTR szFilterCriteria,
 [in] VARTYPE vtDataTypeFilter,
 [in] DWORD dwAccessRightsFilter,
 [out] LPENUMSTRING * ppIEnumString
);

 HRESULT GetItemID(
 [in] LPWSTR szItemDataID,
 [out, string] LPWSTR * szItemID
);

 HRESULT BrowseAccessPaths(
 [in, string] LPCWSTR szItemID,
 [out] LPENUMSTRING * ppIEnumString
);
}

//**
[
 object,
 uuid(39c13a50-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCGroupStateMgt : IUnknown
{
 HRESULT GetState(
 [out] DWORD * pUpdateRate,
 [out] BOOL * pActive,
 [out, string] LPWSTR * ppName,

OPC Data Access Custom Interface Specification 2.05

 178

 HRESULT Read(
 [in] OPCDATASOURCE dwSource,

 [out] DWORD * pLCID,
 [out] OPCHANDLE * phClientGroup,
 [out] OPCHANDLE * phServerGroup
);

 HRESULT SetState(
 [unique, in] DWORD * pRequestedUpdateRate,
 [out] DWORD * pRevisedUpdateRate,
 [unique, in] BOOL * pActive,
 [unique, in] LONG * pTimeBias,
 [unique, in] FLOAT * pPercentDeadband,
 [unique, in] DWORD * pLCID,
 [unique, in] OPCHANDLE * phClientGroup
);

 HRESULT SetName(
 [in, string] LPCWSTR szName
);

 HRESULT CloneGroup(
 [in, string] LPCWSTR szName,
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk
);
}

//**
[
 object,
 uuid(39c13a51-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCPublicGroupStateMgt : IUnknown
{
 HRESULT GetState(
 [out] BOOL * pPublic
);

 HRESULT MoveToPublic(
 void
);
}

//**
[
 object,
 uuid(39c13a52-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCSyncIO : IUnknown
{

OPC Data Access Custom Interface Specification 2.05

 179

[
 object,

 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [out, size_is(,dwCount)] OPCITEMSTATE ** ppItemValues,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT Write(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] VARIANT * pItemValues,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);
}

//**
[
 object,
 uuid(39c13a53-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCAsyncIO : IUnknown
{
 HRESULT Read(
 [in] DWORD dwConnection,
 [in] OPCDATASOURCE dwSource,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [out] DWORD * pTransactionID,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT Write(
 [in] DWORD dwConnection,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] VARIANT * pItemValues,
 [out] DWORD * pTransactionID,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT Refresh(
 [in] DWORD dwConnection,
 [in] OPCDATASOURCE dwSource,
 [out] DWORD * pTransactionID
);

 HRESULT Cancel(
 [in] DWORD dwTransactionID
);

}

//**

OPC Data Access Custom Interface Specification 2.05

 180

[
 object,

 uuid(39c13a54-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCItemMgt: IUnknown
{
 HRESULT AddItems(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCITEMDEF * pItemArray,
 [out, size_is(,dwCount)] OPCITEMRESULT ** ppAddResults,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT ValidateItems(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCITEMDEF * pItemArray,
 [in] BOOL bBlobUpdate,
 [out, size_is(,dwCount)] OPCITEMRESULT ** ppValidationResults,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT RemoveItems(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT SetActiveState(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in] BOOL bActive,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT SetClientHandles(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] OPCHANDLE * phClient,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT SetDatatypes(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] VARTYPE * pRequestedDatatypes,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT CreateEnumerator(
 [in] REFIID riid,
 [out, iid_is(riid)] LPUNKNOWN * ppUnk
);
}

//**

OPC Data Access Custom Interface Specification 2.05

 181

 [in, size_is(dwCount)] FILETIME * pftTimeStamps,
 [in, size_is(dwCount)] HRESULT * pErrors

 uuid(39c13a55-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IEnumOPCItemAttributes : IUnknown
{
 HRESULT Next(
 [in] ULONG celt,
 [out, size_is(,*pceltFetched)] OPCITEMATTRIBUTES ** ppItemArray,
 [out] ULONG * pceltFetched
);

 HRESULT Skip(
 [in] ULONG celt
);

 HRESULT Reset(
 void
);

 HRESULT Clone(
 [out] IEnumOPCItemAttributes ** ppEnumItemAttributes
);
}

// Data Access V2.0 additions
[
 object,
 uuid(39c13a70-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCDataCallback : IUnknown
{
HRESULT OnDataChange(
 [in] DWORD dwTransid,
 [in] OPCHANDLE hGroup,
 [in] HRESULT hrMasterquality,
 [in] HRESULT hrMastererror,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phClientItems,
 [in, size_is(dwCount)] VARIANT * pvValues,
 [in, size_is(dwCount)] WORD * pwQualities,
 [in, size_is(dwCount)] FILETIME * pftTimeStamps,
 [in, size_is(dwCount)] HRESULT * pErrors
);

 HRESULT OnReadComplete(
 [in] DWORD dwTransid,
 [in] OPCHANDLE hGroup,
 [in] HRESULT hrMasterquality,
 [in] HRESULT hrMastererror,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phClientItems,
 [in, size_is(dwCount)] VARIANT * pvValues,
 [in, size_is(dwCount)] WORD * pwQualities,

OPC Data Access Custom Interface Specification 2.05

 182

 [in] BOOL bEnable
);

);

 HRESULT OnWriteComplete(
 [in] DWORD dwTransid,
 [in] OPCHANDLE hGroup,
 [in] HRESULT hrMastererr,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * pClienthandles,
 [in, size_is(dwCount)] HRESULT * pErrors
);

 HRESULT OnCancelComplete(
 [in] DWORD dwTransid,
 [in] OPCHANDLE hGroup
);

}

//**
[
 object,
 uuid(39c13a71-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCAsyncIO2 : IUnknown
{
 HRESULT Read(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in] DWORD dwTransactionID,
 [out] DWORD * pdwCancelID,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT Write(
 [in] DWORD dwCount,
 [in, size_is(dwCount)] OPCHANDLE * phServer,
 [in, size_is(dwCount)] VARIANT * pItemValues,
 [in] DWORD dwTransactionID,
 [out] DWORD * pdwCancelID,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT Refresh2(
 [in] OPCDATASOURCE dwSource,
 [in] DWORD dwTransactionID,
 [out] DWORD * pdwCancelID
);

 HRESULT Cancel2(
 [in] DWORD dwCancelID
);

 HRESULT SetEnable(

OPC Data Access Custom Interface Specification 2.05

 183

 interface IOPCServer ;

 HRESULT GetEnable(
 [out] BOOL *pbEnable
);

}

//**
[
 object,
 uuid(39c13a72-011e-11d0-9675-0020afd8adb3),
 pointer_default(unique)
]
interface IOPCItemProperties : IUnknown
{
 HRESULT QueryAvailableProperties (
 [in] LPWSTR szItemID,
 [out] DWORD * pdwCount,
 [out, size_is(,*pdwCount)] DWORD ** ppPropertyIDs,
 [out, size_is(,*pdwCount)] LPWSTR ** ppDescriptions,
 [out, size_is(,*pdwCount)] VARTYPE ** ppvtDataTypes
);

 HRESULT GetItemProperties (
 [in] LPWSTR szItemID,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] DWORD * pdwPropertyIDs,
 [out, size_is(,dwCount)] VARIANT ** ppvData,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);

 HRESULT LookupItemIDs(
 [in] LPWSTR szItemID,
 [in] DWORD dwCount,
 [in, size_is(dwCount)] DWORD * pdwPropertyIDs,
 [out, string, size_is(,dwCount)] LPWSTR ** ppszNewItemIDs,
 [out, size_is(,dwCount)] HRESULT ** ppErrors
);
}

// This TYPELIB is generated as a convenience to users of high level
tools
// which are capable of using or browsing TYPELIBs.
// 'Smart Pointers' in VC5 is one example.
[
 uuid(B28EEDB2-AC6F-11d1-84D5-00608CB8A7E9),
 version(1.0),
 helpstring("OPCDA 2.0 Type Library")
]
library OPCDA
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

OPC Data Access Custom Interface Specification 2.05

 interface IOPCServerPublicGroups ;
 interface IOPCBrowseServerAddressSpace;
 interface IOPCGroupStateMgt ;
 interface IOPCPublicGroupStateMgt ;
 interface IOPCSyncIO ;
 interface IOPCAsyncIO ;
 interface IOPCItemMgt;
 interface IEnumOPCItemAttributes ;
 interface IOPCDataCallback ;
 interface IOPCAsyncIO2 ;
 interface IOPCItemProperties ;

};

 184

OPC Data Access Custom Interface Specification 2.05

 185

#define OPC_PROP_ALMPRIMARYAREA 303
#define OPC_PROP_ALMCONDITION 304

10 Appendix D - OPCProps.h
This file is provided as a convenience. It duplicates the information presented in the Specification in
the IOPCItemProperties Inteface discussion.

/*++
Module Name:
 OPCProps.h
Author:
OPC Task Force

Revision History:
Release 2.0
 Created
--*/

/*
Property ID Code Assignements:
 0000 to 4999 are reserved for OPC use

*/

#ifndef __OPCPROPS_H
#define __OPCPROPS_H

#define OPC_PROP_CDT 1
#define OPC_PROP_VALUE 2
#define OPC_PROP_QUALITY 3
#define OPC_PROP_time 4
#define OPC_PROP_RIGHTS 5
#define OPC_PROP_SCANRATE 6

#define OPC_PROP_UNIT 100
#define OPC_PROP_DESC 101
#define OPC_PROP_HIEU 102
#define OPC_PROP_LOEU 103
#define OPC_PROP_HIRANGE 104
#define OPC_PROP_LORANGE 105
#define OPC_PROP_CLOSE 106
#define OPC_PROP_OPEN 107
#define OPC_PROP_TIMEZONE 108

#define OPC_PROP_DSP 200
#define OPC_PROP_FGC 201
#define OPC_PROP_BGC 202
#define OPC_PROP_BLINK 203
#define OPC_PROP_BMP 204
#define OPC_PROP_SND 205
#define OPC_PROP_HTML 206
#define OPC_PROP_AVI 207

#define OPC_PROP_ALMSTAT 300
#define OPC_PROP_ALMHELP 301
#define OPC_PROP_ALMAREAS 302

OPC Data Access Custom Interface Specification 2.05

 186

#define OPC_PROP_ALMLIMIT 305
#define OPC_PROP_ALMDB 306
#define OPC_PROP_ALMHH 307
#define OPC_PROP_ALMH 308
#define OPC_PROP_ALML 309
#define OPC_PROP_ALMLL 310
#define OPC_PROP_ALMROC 311
#define OPC_PROP_ALMDEV 312

	Introduction
	Audience
	Deliverables

	OPC Data Access Fundamentals
	OPC Overview
	Where OPC Fits
	General OPC Architecture and Components
	Overview of the Objects and Interfaces
	The Address Space and Configuration of the Server
	Application Level Server and Network Node Selection
	Synchronization and Serialization Issues
	Public (aka shared) Groups
	Persistent Storage Story

	OPC Data Access Quick Reference
	Custom Interface
	OPCServer Object
	OPCGroup Object
	EnumOPCItemAttributes Object

	Custom Interface/Client Side

	OPC Custom Interface
	Overview of the OPC Custom Interface
	General Information
	Version Interoperability
	Ownership of memory
	Standard Interfaces
	Null Strings and Null Pointers
	Returned Arrays
	Public Groups
	CACHE data, DEVICE data and TimeStamps
	Time Series Values
	Asynchronous vs. Synchronous Interfaces
	The ACTIVE flags, Deadband and Update Rate
	Errors and return codes
	Startup Issues
	VARIANT Data Types and Interoperability
	Localization and LocaleID

	Data Acquisition and Active State Behavior
	IOPCSyncIO
	IOPCASyncIO2
	SUBSCRIPTION via IOPCDataCallback
	IOPCASyncIO (old)
	SUBSCRIPTION via IDataObject (old)

	OPCServer Object
	Overview
	IUnknown
	IOPCCommon
	IOPCServer
	IOPCServer::AddGroup
	IOPCServer::GetErrorString
	IOPCServer::GetGroupByName
	IOPCServer::GetStatus
	IOPCServer::RemoveGroup
	IOPCServer::CreateGroupEnumerator

	IConnectionPointContainer (on OPCServer)
	IConnectionPointContainer::EnumConnectionPoints
	IConnectionPointContainer:: FindConnectionPoint

	IOPCItemProperties
	IOPCItemProperties::QueryAvailableProperties
	IOPCItemProperties::GetItemProperties
	IOPCItemProperties::LookupItemIDs

	IOPCServerPublicGroups (optional)
	IOPCServerPublicGroups:: GetPublicGroupByName
	IOPCServerPublicGroups:: RemovePublicGroup

	IOPCBrowseServerAddressSpace (optional)
	IOPCBrowseServerAddressSpace:: QueryOrganization
	IOPCBrowseServerAddressSpace:: ChangeBrowsePosition
	IOPCBrowseServerAddressSpace:: BrowseOPCItemIDs
	IOPCBrowseServerAddressSpace:: GetItemID
	IOPCBrowseServerAddressSpace:: BrowseAccessPaths

	IPersistFile (optional)
	IPersistFile::IsDirty
	IPersistFile::Load
	IPersistFile::Save
	IPersistFile::SaveCompleted
	IPersistFile::GetCurFile

	OPCGroup Object
	General Properties
	Name
	Cached data
	Active
	Update Rate
	Time Zone (TimeBias)
	Percent Deadband
	ClientHandle
	Reading and Writing Data
	Public Groups

	IOPCItemMgt
	IOPCItemMgt::AddItems
	IOPCItemMgt::ValidateItems
	IOPCItemMgt::RemoveItems
	IOPCItemMgt::SetActiveState
	IOPCItemMgt::SetClientHandles
	IOPCItemMgt::SetDatatypes
	IOPCItemMgt::CreateEnumerator

	IOPCGroupStateMgt
	IOPCGroupStateMgt::GetState
	IOPCGroupStateMgt::SetState
	IOPCGroupStateMgt::SetName
	IOPCGroupStateMgt::CloneGroup

	IOPCPublicGroupStateMgt
	IOPCPublicGroupStateMgt::GetState
	IOPCPublicGroupStateMgt::MoveToPublic

	IOPCSyncIO
	IOPCSyncIO::Read
	IOPCSyncIO::Write

	IOPCAsyncIO2
	IOPCAsyncIO2::Read
	IOPCAsyncIO2::Write
	IOPCAsyncIO2::Refresh2
	IOPCAsyncIO2::Cancel2
	IOPCAsyncIO2::SetEnable
	IOPCAsyncIO2::GetEnable

	IConnectionPointContainer (on OPCGroup)
	IConnectionPointContainer::EnumConnectionPoints
	IConnectionPointContainer:: FindConnectionPoint

	IEnumOPCItemAttributes
	IEnumOPCItemAttributes::Next
	IEnumOPCItemAttributes::Skip
	IEnumOPCItemAttributes::Reset
	IEnumOPCItemAttributes::Clone

	IOPCAsyncIO (old)
	IOPCAsyncIO::Read
	IOPCAsyncIO::Write
	IOPCAsyncIO::Refresh
	IOPCAsyncIO::Cancel

	IDataObject (old)
	IDataObject::DAdvise
	IDataObject::DUnadvise

	Client Side Interfaces
	IOPCDataCallback
	IOPCDataCallback::OnDataChange
	IOPCDataCallback::OnReadComplete
	IOPCDataCallback::OnWriteComplete
	IOPCDataCallback::OnCancelComplete

	IOPCShutdown
	IOPCShutdown::ShutdownRequest

	IAdviseSink (old)
	IAdviseSink::OnDataChange

	IAdviseSink - Data Stream Formats (old)
	OPCGROUPHEADER
	OPCITEMHEADER1
	OPCITEMHEADER2
	OPCGROUPHEADERWRITE
	OPCITEMHEADERWRITE
	Marshaling the Data (Variants) into the Stream

	Installation Issues
	Component Categories
	Registry Entries for Custom Interface
	Registry Entries for the Proxy/Stub DLL

	Description of Data Types, Parameters and Structures
	Item Definition
	AccessPath
	Blob
	Time Stamps
	Variant Data Types for OPC Data Items
	Constants
	OPCHANDLE
	Group Handles
	Item Handles

	Structures and Masks
	OPCITEMSTATE
	OPCITEMDEF
	OPCITEMRESULT
	OPCITEMATTRIBUTES
	OPCSERVERSTATUS
	Access Rights

	OPC Quality flags

	Summary of OPC Error Codes
	Appendix A - OPCError.h
	Appendix B - Data Access IDL Specification
	Appendix D - OPCProps.h

