
OPC: The Ins and Outs to What It’s About
“The Every Man’s Guide to OPC”

	
	 	 	 	 Darek Kominek, P. Eng. Alberta, Canada - 2009

The Every Man’s Guide to OPC is an easy-to-

read overview of the most popular industrial open

connectivity standard - OPC. This paper first introduces

the main idea behind OPC, shows why OPC is different

from conventional (often proprietary) communication

protocols, and explains how OPC helps overcome the

limitations of such native protocols.

Next, the paper explains what the building blocks of OPC

are (OPC Clients and OPC Servers) and how they work

together to make data-sharing possible. Using clear

illustrations and minimal technical jargon, The Every

Man’s Guide to OPC helps readers of all technical levels

quickly grasp what OPC is and how they can use it to

establish inter-connectivity in their own environments.

Executive Summary

How OPC Solves Automation’s Data Connectivity

Problem

Today, automation is used prominently in every major industry. While different
industries often use different specialized devices, control systems, and
applications, they all share a common, rapidly growing challenge - how to
share data both amongst all these components and the rest of the enterprise.

Before looking at what OPC is and how it goes about solving one of
automation’s biggest communications headaches, it is worth looking at what
the problems were in the first place. Following is a list of factors that have
traditionally caused the biggest data sharing issues, followed by a brief
explanation of what impact OPC has hadon each issue:

Proprietary Protocols: Vendors often used proprietary protocols that
allowed products from a particular product line to communicate among
each other, but required custom drivers to communicate with other vendors’
products. To make matters worse, different product lines from the same
vendor often did not communicate amongst each other, which necessitated the
need for additional connectors.

OPC resolves this by making it unnecessary for the Data Sink to know anything
about how the Data Source communicates or organizes its data.

Custom Drivers: Every end-to-end connection required a custom driver to
facilitate communications between specific endpoints. For example, if an HMI
needed to communicate with a PLC, it required a custom HMI driver written for
the specific protocol used by the PLC. If this PLC data was to be historized, the
historian required its own driver because the HMI’s custom driver could only be
used to communicate with the HMI, not the historian. If a custom driver for the
specific endpoints was not available, data communications were difficult and
expensive to establish.

OPC eliminates the need for custom drivers between each new application
and Data Source. In Figure 1, a single standard PLC driver could be shared by
both the HMI and the Historian via an OPC connector with the added benefit
that the OPC connector would only require a single connection to the PLC
– reducing controller loading.

Complex Integration: The use of custom drivers between every endpoint
meant that even a small number of devices and applications quickly involved
the use of many drivers. The same HMI running on multiple computers,
all communicating with the same device, required multiple installations
and configurations of the same driver on each computer. If the HMIs
communicated with additional devices, each HMI required its own set of
custom drivers for each of the devices. This created a version maintenance
nightmare.

“OPC eliminates the need for

custom drivers between each

new application and Data

Source.”

Figure 1: Custom Driver Problem - Each application requires a device or
protocol specific driver to allow it to communicate with each respective
device. Drivers are not re-usable between applications because each
application uses its own data format(s).

Using OPC greatly simplifies integration because once an OPC Connector for
a particular Data Source is configured, all OPC-enabled applications can start
sharing data with that Data Source with no concern for additional custom
drivers.

Device and Controller Loading: Each driver establishes its own
connection to the device or controller that it is designed to communicate
with. Given the large number of custom drivers being used in a typical
installation, the controller was often bombarded by many requests for the
same information from every application that it needed to communicate with.
In addition, many devices could only accept a limited number of simultaneous
connections. If the number of drivers trying to connect to a device exceeded
the number of connections it had, further workarounds were needed.

Traffic, and hence device loading, is greatly reduced by using OPC Connectors
because a single Device-specific OPC connector requires only a single
connection to the Data Source while simultaneously communicating with many
applications.

Obsolescence of Legacy Infrastructure: As vendors release new
products they eventually stop supporting older ones. When a new version of
an HMI comes out, it may require its own set of device drivers that sometimes
may no longer support communications with a device the previous version of
the HMI supported.

OPC extends the useful life of legacy systems because once an OPC connector
for a legacy system is configured, it allows any OPC-enabled application
(most are) to communicate with the legacy system regardless of whether the
application natively supports communication with the legacy system or not.
Thus, OPC allows the newest applications to continue communicating with the
oldest systems.

Enterprise Wide Data Connectivity: As the need for automation
data grows throughout the enterprise, data-connectivity problems are
compounded because applications from the corporate side were not designed
to communicate with devices and controllers. This can potentially add extra
load to the automation infrastructure and raise various automation security
concerns.

OPC makes true enterprise-wide automation data sharing possible by allowing
approved applications to share data with automation Data Sources without the
need for installing custom drivers—all that’s required is an OPC connector.

Are there some Real-World Examples of OPC in Action?

Yes. For some real-world examples of how OPC has been used to resolve
various third- party data connectivity issues check out these OPC Case studies
(http://www.matrikonopc.com/resources/case-studies.aspx).

“Traffic and hence device

loading is greatly reduced

by using OPC Connectors

[because all clients use a

single connection to the data

source.]”

“OPC extends the useful life of

legacy systems... Thus, OPC

allows the newest applications

to continue communicating

with the oldest systems.”

Introduction to OPC

What is OPC?

OPC is the world’s most popular standards-based data-connectivity method. It
is used to answer one of the automation industry’s biggest challenges: how to
communicate between devices, controllers, and/or applications without getting
caught up in the usual custom driver-based connectivity problems.

Why OPC Succeeds where Custom Drivers Fail

The key to OPC’s success in creating truly vendor-independent communications
is that OPC abstracts the Data Source (e.g., PLC) and Data Sink (e.g., HMI)
implementation details from each side so data can be exchanged between
them without requiring them to know anything about each other’s native
communications protocol and internal data organization. This is in sharp
contrast to the custom driver approach of writing applications that, by
definition, are required to natively communicate with both the Data Source
and the Data Sink.

How OPC Communication works (Conceptual)

OPC can be represented as an “abstraction” layer that sits between the Data
Source and the Data Sink, allowing them to exchange data without knowing
anything about each other.

How OPC Works (Functional View)

The OPC “device abstraction” is realized by using two, specialized OPC
components called an OPC Client and OPC Server. Each of which is described
in a following section. What’s important to note is that just because the Data
Source and Data Sink can communicate with each other via OPC does not
mean their respective native protocols are no longer necessary or have been
replaced by OPC. Instead, these native protocols and/or interfaces are still
present, but only communicate with one of the two OPC components. In turn,
the OPC components exchange information amongst each other and the loop is
closed. Data can travel from the Application to the Device without having one
talk directly to the other.

Benefits of using OPC Connectivity

At first glance, trading a single Custom Driver for two OPC components (OPC
Client and OPC Server) may not look like much of an improvement but as
experience has shown, it is. Following are some key benefits of using OPC:

An OPC enabled Application can freely communicate with any OPC-enabled
Data Source visible to it on the network without the need for any driver
software, specific to the Data Source.
OPC-enabled applications can communicate with as many OPC-enabled
Data Sources as they need. There is no inherent OPC limitation on the
number of connections made.
Today OPC is so common that there’s an OPC connector available for
almost every modern and legacy device on the market. It’s easy to get
started using OPC.

1.

2.

3.

Figure 2: OPC serves as an abstraction layer between Data
Sources and Data Sinks - enabling intercommunication without
either side having to know the other’s native protocol.

Figure 3: OPC Client/Server Architecture - A closer look at the
OPC abstraction layer reveals two components: an OPC Client
and an OPC Server. OPC specifications define the messaging
between these two components.

4. OPC-enabled Data Sources may be swapped out, exchanged, or upgraded
without the need to update the drivers used by each application (Data
Sink) communicating with the Data Source via OPC. Only the OPC Server
for that Data Source needs to be kept current.

5. Users are free to choose the best-suited devices, controllers, and
applications for their projects without worrying about which vendor each
came from and whether they will communicate with each other… inter-
communication is now assumed!

What Types of Data does OPC Support?

The most common types of Automation data transferred between devices,
controllers, and applications break down into three broad categories:

Real-time data
Historical data
Alarm & Event data

Each of the above also supports a wide range of value types. Some common
examples of these data types are integer, floating point, string, date, and
various array types to name a few. OPC addresses the challenges of working
with these different data categories by independently specifying how each one
is to be transmitted via the OPC Client and OPC Server architecture.

The three OPC specifications corresponding to the three data categories are:

OPC Data Access Specification (OPC DA) – used to transport real-time data
OPC Historical Data Access Specification (OPC HDA) – used to transport
historical data
OPC Alarms & Events Specification (OPC A&E) – used to transport alarming
information

Do All OPC Connectors Support all OPC Specifications?

No. OPC connectors are not required to support all of the OPC specifications.
Historically, most common were OPC servers that supported real-time data
followed by OPC HDA implementations. It is prudent to inquire what OPC
specifications an OPC connector supports before choosing it for use in a
project.

Does it Matter what OPC Specification an OPC Client or OPC
Server Supports?

Yes, this is crucial. While all three OPC Specifications (OPC DA, OPC HDA,
OPC A&E) use the same underlying OPC Client/Server architecture to transfer
the different data category types, both the OPC Client and OPC Server must
support the same OPC specification to properly coordinate passing data
between each other, and to work correctly with the Data Sink and Data Source
respectively.

•
•
•

1.
2.

3.

“OPC addresses the challenges

of working with different data

categories by independently

specifying how each one is to

be transmitted.”

“It is prudent to inquire what

OPC specifications an OPC

connector supports before

choosing it for use in a

project.”

OPC Servers

What is an OPC Server?

An OPC Server is a software application, a “standardized” driver, specifically
written to comply with one or more OPC specifications. The word “server” in
“OPC Server” does not refer to the type of computer being used but instead
reflects its relationship with its OPC counterpart, the OPC Client.

What Do OPC Servers Do?

OPC Servers are connectors that may be thought of as translators between the
OPC world and a Data Source’s native communication protocol or interface.
Since OPC is bi-directional, this means OPC Servers can both read-from and
write-to a Data Source. The OPC Client/OPC Server relationship is a Master/
Slave one which means one OPC Server will only transfer data to/from a Data
Source if an OPC Client commands it to.

What Types of Data Sources (Devices) can OPC Servers
Communicate With?

OPC Servers can communicate with virtually any Data Source whose output
can be read or written to via electronic means. A brief list of possible Data
Sources includes: devices, PLCs, DCSs, RTUs, electronic scales, databases,
historians, web-pages, and automatically updating CSV files. To communicate
with any of these devices requires only the use of an OPC Server that employs
the appropriate native protocol or interface. Once such an OPC Server
is configured, any OPC enabled application (with permission) can begin
communicating with the Data Source without concern for how the Data Source
communicates natively.

Where can I Find an OPC Server for Device X?

While many vendors provide OPC Servers with their devices, controllers, and
applications, there are many who do not. MatrikonOPC is the world’s largest
provider of high-quality, OPC connectors for hundreds of devices. A good
place to start is on the MatrikonOPC Server website, or by calling MatrikonOPC
directly.

How do OPC Servers Work?

While users do not need to know anything about the inner workings of OPC
Servers to be able to use them, a conceptual understanding of what goes
on under the hood helps shed light on why the quality and performance of
different vendors’ OPC Servers vary greatly.

“OPC Servers can

communicate with virtually

any Data Source.”

A conceptual view of the inner workings of an OPC Servers looks as follows:

OPC Communications Module: This part of the OPC Server
is responsible for properly communicating with a given OPC Client.
Well written OPC Servers must be fully compliant with the OPC
Specification(s) they implement to ensure they properly communicate
with OPC Clients.

Native Communications Module: The OPC Server should employ
the most efficient method of communicating with the Data Source. In
some cases this means connecting to the Data Source directly via its
native protocol, while in other cases, this means communicating with
the Data Source via its custom driver via an Application Programming
Interface (API). Typically, the more experience the OPC Server vendor
has with the device, the better the OPC Server will utilize the device’s
communications options.

Translation/Mapping Module: This is where all the “magic” in an
OPC Server happens. This module is tasked with properly interpreting
the arriving OPC requests from the OPC Client and in turning them into
proper native requests that get sent to the Data Source and vice versa.
If this is done efficiently, the OPC vendor can keep Data Source loading
to a minimum while maximizing data throughput.

Can an OPC Server from one Vendor Communicate with OPC
Clients from Other Vendors?

Yes, assuming both the OPC Client and OPC Server are compliant with the
same OPC specifications, they should be capable of communicating with each
other regardless of which vendor each OPC component came from.

Can OPC Servers Share Information with other OPC Servers?

OPC Servers do not communicate directly with each other; they are only
designed to communicate with OPC Clients. There are however, OPC utilities
like the MatrikonOPC Data Manager (http://www.matrikonopc.com/products/
opc-data-management/opc-data-manager.aspx), designed to specifically make
this OPC Server-to-OPC Server communication trivial.

OPC Clients

What is an OPC Client?

An OPC client is software written to communicate with OPC connectors. It
uses messaging defined by a specific OPC Foundation specification.

•

•

•

“Well-written OPC Servers

must be fully compliant with

the OPC specification(s) they

implement.”

Figure 4: Conceptual OPC Server Anatomy - Conceptually,
an OPC Server can be broken down into three modules: OPC
Communications module, Translation/Mapping module, and a
Native Communications module.

What does an OPC Client do?

Conceptually: OPC Clients represent a data-sink. They initiate and control
communications with OPC Servers based on what the application they are
embedded in requests of them. OPC Clients translate a given application’s
communication requests into an OPC equivalent request and send it to the
appropriate OPC Server for processing. In turn, when OPC data returns from
the OPC Server, the OPC Client translates it back into the application’s native
format so the application can properly work with the data.

Technically: OPC Clients are software modules used by an application to
enable it to communicate with any compliant OPC Server visible to it on the
network. Typically, OPC Clients are embedded in applications such as HMIs,
trending packages, historians, and report writers to make them inherently
OPC-enabled.

It is common to refer to the application with an OPC Client embedded in it as
the “OPC Client” even though only the OPC implementation is the true OPC
Client.

Can OPC Clients Simultaneously Communicate with Multiple
Devices (OPC Servers)?

There are two parts to this answer:

First, Semantics: It’s important to remember that OPC Clients are by
design only capable of communicating with OPC Servers, not the end
devices or other data sources. This is necessary because OPC Clients must
remain protocol independent, otherwise they would fall into the original
device-driver trap of the past.
Yes, OPC Clients can communicate with multiple OPC Servers at the same
time. Effectively, this means an OPC Client can read and write data to and
from multiple data sources via their respective OPC Servers.

How does an OPC Client Work?

As with the OPC Server, the OPC Client can be conceptually broken down
into three modules that include: the Application Communications Module,
Translation/Mapping Module, and OPC Communications Module. Each of whose
functions are described below.

OPC Communication Module: While not as involved as the OPC Server
(the OPC Server portion is more complicated) it is still crucial for the OPC
Client to behave correctly as it connects with an OPC Server, exchanges data
with it, and disconnects without destabilizing the OPC Server.

Application Communications Module: The OPC Client is typically
written to work within a specific application, so it relies on a few calls to the
Application’s Programming Interface (API) to allow data to be passed from the
application down to the OPC Server/Data-Source via the OPC Client. It is also
possible for a generic OPC Client to communicate with an application via a
protocol rather an API if the application supports such a protocol. (An example
of this is the MatrikonOPC Client for ODBC which uses SQL statements over
ODBC to communicate with a Relation Database application.)

1.

2.

“OPC Clients can communicate

with multiple OPC Servers at

the same time.”

Figure 5: Conceptual OPC Client Anatomy - Mirroring the OPC
Server, an OPC Client can also be thought of as consisting of
three modules: Native application communications, Translation/
Mapping module, and a Communications module.

Copyright © Matrikon Inc 2009

Translation/Mapping Module: A key function of the OPC Client is to
bi-directionally translate information as the application it represents requests
data to be read-from or written-to the end device or Data-Source.

How many OPC Servers can an OPC Client connect to?

The short answer is—as many as it needs to. Within the OPC framework, there
is no theoretical limit placed on how many OPC Servers an OPC Client can
connect to.

Can OPC Clients communicate directly with other OPC Clients?

No. OPC Client-to-OPC Client communications are not defined in OPC. Only the
OPC Client /OPC Server architecture is supported. However, if an application is
expected to provide OPC Data to other clients, it needs to have an OPC Server
of its own. This OPC Server will then allow OPC Clients from other applications
to use this application as an OPC Data Source.

Where is the OPC Client Installed?

OPC Clients are typically built into the applications that use them, such as
HMIs or historians for example. If for some reason the application at hand
does not have a built in OPC Client, one may be available from the Application
vendor or a third-party OPC vendor like MatrikonOPC. An OPC Client external
to the application would typically communicate with the application via one of
its native protocols. In this case, the OPC Client would not even have to reside
on the same computer as the application.

Bringing it all Together

This paper explained how OPC solves modern industry’s growing challenge
of accessing and sharing data between devices, controllers, and applications
regardless of what their native communications are or what vendor they are
from. A high-level description illustrated what OPC is and then explained
what OPC Clients and OPC Servers (OPC’s building blocks) are and the roles
they play in OPC communications. While in-depth knowledge of OPC’s inner-
workings is not a requirement for using it, even a brief familiarity with its main
concepts is beneficial.

OPC’s hallmark “plug-and-play” approach to data connectivity lead to its
rapid rise in popularity, making it the world’s most popular data-connectivity
technology. Thanks to its versatility, OPC is used at all enterprise levels and
across all industrial verticals.

“…there is no theoretical limit

placed on how many OPC

Servers an OPC Client can

connect to.”

“OPC’s hallmark “plug-and-

play” approach to data

connectivity lead to its rapid

rise in popularity.”

Toll Free 1-877-628-7456
Ph: +1 (780) 945-4099

Email: info@MatrikonOPC.com
Web: www.MatrikonOPC.com

Americas Asia-Pacific Europe Middle East Africa

http://www.matrikonopc.com/
http://www.matrikonopc.com/

