
Page 1 of 6 | IIoT Protocols to Watch

WHITE PAPER

IoT is alphabet soup. IIoT, IoE, HTTP, REST, JSON, MQTT, OPC UA,
DDS, and the list goes on. Conceptually, we’ve discussed IoT for a
long time and understand the basic idea and technical feasibility.
Now we’re moving forward, identifying use cases and building
prototypes. So it’s about time to work on that alphabet.

IIoT Protocols to Watch
Aron Semle, Sr Solutions Manager, PTC

Publish/subscribe protocols require the devices
to connect and publish data to a topic on an
intermediary broker. Consumers can connect to
the broker and subscribe to data from the topic.
For example, a device can sample the temperature
every minute and publish once an hour. An
application subscribed to the data stream receives
an hour’s worth of one-minute samples every hour.
This model decouples the producer of the data from
the consumer of the data.

For example, you know that your server in the field
has an IP address of 55.55.55.55 and is listening on
port 1234. The client can connect and make requests.

Publish/subscribe protocols are a better fit when
your infrastructure is unknown. For example, if a
remote device changes networks or has intermittent
connectivity, it’s easier for the device to call home
when it’s online and publish its data.

In terms of pros and cons, client/server protocols are
more interoperable and secure because they are based
on point-to-point connections. They are, however,
less scalable, because point-to-point connections are
harder to manage and more resource intensive.

A big challenge in IoT is interoperability. In a recent
Nexus survey, 77% of respondents stated that
interoperability was their biggest challenge in
IoT. Connecting industrial devices to IT and IoT
platforms is big business, and it’s where a lot of the
abbreviations come from. There are many protocols
to accomplish this: some that are proprietary and
others that are open standards. All are jockeying to
be the one and only IoT protocol, but it’s clear this will
never be the case. These protocols will co-exist—each
with their own strengths and weaknesses—and it’s
our job to understand where and when to use them.

This white paper focuses on the open standards
for connecting industry to IT and provides use
cases for each.

Client/Server vs. Publish/Subscribe

For the purpose of this discussion, it’s important to
group protocols into two categories: client/server
and publish/subscribe.

Client/server protocols require the client to connect
to the server and make requests. In this model, the
server holds the data and responds to requests
from the client. For example, the client may read a
temperature. This requires the client to know about
the server in advance and be able to connect.

http://www.ptc.com

WHITE PAPER

Page 2 of 6 | Scheduling Data Collection with Kepware

In contrast, publish/subscribe protocols are more scalable
because the decoupling of producers and consumers allows each
to be added and removed independently. That said, securing
these protocols is more complex because there are more pieces
involved. They can also have interoperability issues given the lose
coupling of the producer and consumer. For example, changing
the message format that a producer sends requires all consumers
to adapt to the new message type.

Now that we understand the basic categories, let’s look at client/
server and publish/subscribe protocols in more detail.

Protocols

The protocols we’ll discuss have the potential to connect
together industrial devices with IoT platforms. It may go without
saying, but if you’re trying to connect two applications and both
support HTTP, try HTTP first. If that doesn’t work or if your
environment doesn’t support it, keep reading. We’ll describe each
protocol and when to use it. Here is the short list that we’ll cover:

• OPC UA

• HTTP (REST/JSON)

“ Client/server protocols
are best used when
you understand your
infrastructure...
Publish/Subscribe
protocols are a better fit
when your infrastructure
is unknown”

• MQTT

• CoAP

• DDS

• AMQP

OPC UA

OPC Unified Architecture (OPC UA) is the next generation
standard from the OPC Foundation. Classic OPC is well known
in the industrial space and provides a standard interface
to communicate with PLCs. OPC UA aims to expand OPC’s
interoperability to the device and enterprise levels.

OPC UA is a client/server protocol. Clients connect, browse, read,
and write to industrial equipment. UA defines communications
from the application to the transport layer, making it very
interoperable between vendors. It’s also highly secure, and uses
two-way message signing and transport encryption.

OPC UA has a wide install base in the industrial space. It is a good
solution for tying PLC and sensor data into existing industrial
applications like SCADA and MES systems, where OPC and OPC
UA connectivity are already available.

http://www.ptc.com

WHITE PAPER

Page 3 of 6 | Scheduling Data Collection with Kepware

“ The focus on HTTP
in IoT is around
Representational State
Transfer (REST), which
is a stateless model
where clients can access
resources on the server
via requests.”

OPC UA is new to the IT space, however. Some people in IT
are intimidated by the complexity of UA compared to other IT
protocols. A lot of this complexity is a result of OPC UA being an
industrial protocol, but this perception has led to slow adoption
by IoT platforms and the open source community.

Things are changing, however: recently, the OPC Foundation open
sourced the OPC UA standard to make it more accessible and help
increase adoption.

For now, use OPC UA when you need to get PLC and sensor
data into existing SCADA and MES solutions, and keep an eye
out for OPC UA adoption by IoT platform providers and the
open source community.

HTTP (REST/JSON)

Hypertext Transfer Protocol (HTTP) is a connectionless client/
server protocol ubiquitous in IT and the web. Because there are
countless open source tools that use HTTP, and every coding
language has HTTP libraries, it is very accessible.

The focus on HTTP in IoT is around Representational State
Transfer (REST), which is a stateless model where clients can
access resources on the server via requests. In most cases, a
resource is a device and the data that a device contains.

HTTP provides a transport, but doesn’t define the presentation
of the data. As such, HTTP requests can contain HTML, JavaScript,
JavaScript Object Notation (JSON), XML, and so forth. In most
cases, IoT is standardizing around JSON over HTTP. JSON is similar
to XML—without all the overhead and schema validation—making
it more lightweight and flexible. JSON is also supported by most
tools and programming languages.

Industry has some experience using HTTP for device and product
configuration, but not for data access. As such, many IoT and IT
platforms support consuming and providing data in HTTP form,
but few industrial platforms do. This is changing as more gateways
and PLCs begin to add native HTTP support.

http://www.ptc.com

WHITE PAPER

Page 4 of 6 | Scheduling Data Collection with Kepware

Use HTTP for sending chunks of data, like one-minute temperature
readings every hour. Don’t use HTTP for streaming high-velocity
data. HTTP can do sub-second data, but 100 ms updates over HTTP
are difficult. It has a lot of overhead per message, so streaming
small messages is inefficient. And always secure communications
with HTTPS. The overhead is minimal.

Be aware of interoperability issues with HTTP products. Just
because two products support HTTP/REST/JSON doesn’t mean
they’ll work out of the box. Often the JSON formats are different
and require minimal integration to get things working.

MQTT

Message Queuing Telemetry Transport (MQTT) is a publish/
subscribe protocol designed for SCADA and remote networks.
It focuses on minimal overhead (2 byte header) and reliable
communications. It’s also very simple. Like HTTP, MQTT’s payload
is application specific, and most implementations use a custom
JSON or binary format.

MQTT isn’t as widely used as HTTP, but it still has a large market
share in IT. There are many open source clients/producers, brokers,
projects, and examples in every language.

Use MQTT when bandwidth is at a premium and you don’t know
your infrastructure. Make sure you or your vendor has an MQTT
broker you can publish data to—and always secure communication
via Transport Layer Security (TLS).

Does the end application not support MQTT? If so, there are a
lot of open source tools for getting MQTT data into databases and
other formats like HTTP.

Beware of interoperability issues similar to HTTP. Just because two
applications support MQTT doesn’t mean they are interoperable.
The topic and JSON formats may need to be adjusted to make the
two products interoperable.

“ Many IoT platforms
support HTTP and MQTT
as their first two inbound
protocols for data.”

http://www.ptc.com

WHITE PAPER

Page 5 of 6 | Scheduling Data Collection with Kepware

CoAP

The Constrained Application Protocol (CoAP) was created
by the Internet Engineering Task Force (IETF) to provide the
interoperability of HTTP with minimal overhead. CoAP is
similar to HTTP, but uses UDP/multicast instead of TCP. It
also simplifies the HTTP header and reduces the size of each
request. CoAP is used in edge-based devices where HTTP
would be too resource intensive, and is often the third protocol
supported by IoT platforms after HTTP and MQTT. Similar to
HTTPS, CoAP uses Datagram Transport Layer Security (DTLS) to
secure communications.

Use CoAP when HTTP is too bandwidth intensive. Keep in mind
that CoAP’s market adoption is not as large as HTTP, so it may
limit your software and hardware options. There are solutions
for converting CoAP messages to and from HTTP that make CoAP
solutions more interoperable.

DDS

Data Distribution Service (DDS) is a publish/subscribe protocol
that’s focused on communication at the edge of the network.
DDS is an open standard managed by the Object Management
Group (OMG). Unlike MQTT which requires a centralized broker,
DDS is decentralized. DDS nodes communicate directly in peer-
to-peer fashion using UDP multicast. This removes the need for
centralized network management and also makes DDS a faster
protocol, reaching sub-millisecond resolution.

DDS is a good solution for reliable, real-time data delivery at the
edge. Use it for fast M2M communications.

DDS supports brokers to integrate DDS networks with the
enterprise, but in practice it is not well positioned as the
integration point between industry and IT as brokers are often
secondary to the DDS network.

“ DDS is a good solution
for reliable, real-time
data delivery at the
edge. Use it for fast
M2M communications.”

http://www.ptc.com

WHITE PAPER

Page 6 of 6 | IIoT Protocols to Watch

Kepware Technologies is a software development business of PTC Inc.,
headquartered in Portland, Maine. Kepware provides a portfolio of software
solutions to help businesses connect diverse automation devices and
software applications and enable the Industrial Internet of Things. From plant
floor to wellsite to windfarm, Kepware serves a wide range of customers
in a variety of vertical markets including Manufacturing, Oil & Gas, Building
Automation, Power & Utilities, and more. Established in 1995 and now
distributed in more than 100 countries, Kepware’s software solutions help
thousands of businesses improve operations and decision making.

© 2016, PTC Inc. (PTC). All rights reserved. Information described
herein is furnished for informational use only, is subject to change without
notice, and should not be taken as a guarantee, commitment, or offer by PTC.
PTC, the PTC logo, and all PTC product names and logos are trademarks or
registered trademarks of PTC and/or its subsidiaries in the United States and
other countries. All other product or company names are property of their
respective owners. The timing of any product release, including any features or
functionality, is subject to change at PTC’s discretion.

J7846–IIoTProtocolstoWatch–EN–1016
First edition published 2015. Second edition published 2016.

REST Server REST Client MQTT ClientMicrosoft
APIs

IoT API

Scheduling

Analytics

Modeling

Connectivity

Big Data/Analytics

AMQP

Advanced Message Queuing Protocol (AMQP) is
another publish/subscribe protocol that comes out
of the financial services sector. It has a presence in IT,
but a limited presence in industry.

AMQP’s biggest benefit is its robust communications
model that supports transactions. Unlike MQTT,
AMQP can guarantee transactions complete—
which, though useful, is not always required by
IoT applications.

AMQP often gets grouped with IoT protocols and it is
one—but its biggest con is that it’s a heavy protocol.
It was meant for backend IT systems, and not the
edge of the network.

Conclusion

OPC UA, HTTP, MQTT, CoAP, DDS, and AMQP all have
a place in IoT. Which protocols take majority market
share is unclear, but each has its pros and cons.

This will ensure the success of your IoT applications
and protect you from the protocol wars.

Be sure to check out Kepware’s new IoT Gateway
available in the KEPServerEX version 5.19 release. We
included support for REST and MQTT, allowing our
customers to get PLC data into new IoT platforms
and open source tools like Node-RED. Unlock your
industrial data to the Internet of Things.

“ It ’s important to pick the
protocol that best fits your
needs, and select technology
partners that can adapt to
these protocols.”

http://www.ptc.com

