
Revision 1.2, February 22, 2002 Page 1 of 5

DNP3 Overview

Provided by:
Triangle MicroWorks, Inc.
Raleigh, North Carolina

Phone +1 919-870-5101 • Fax +1 919-870-6692
www.TriangleMicroWorks.com

1 History
DNP was originally created by Westronic, Inc. (now GE Harris) in 1990. In 1993, the “DNP 3.0 Basic
4” protocol specification document set was released into the public domain. Ownership of the protocol
was given over to the newly formed DNP Users Group in October of that year. Since that time, the
protocol has gained worldwide acceptance, including the formation of Users Group Chapters in China,
Latin America, and Australia.

In January 1995, the DNP Users Group Technical Committee was formed to review enhancements and
to recommend them for approval to the general Users Group. One of the most important tasks of this
body was to publish the “DNP Subset Definitions” document, which establishes standards for scaled-up
or scaled-down implementations of DNP3.

DNP3 is an open, intelligent, robust, and efficient modern SCADA protocol. It can
• request and respond with multiple data types in single messages,
• segment messages into multiple frames to ensure excellent error detection and recovery,
• include only changed data in response messages,
• assign priorities to data items and request data items periodically based on their priority,
• respond without request (unsolicited),
• support time synchronization and a standard time format,
• allow multiple masters and peer-to-peer operations,
• and allow user definable objects including file transfer.

In 1994, the IEEE Power Engineering Society’s Data Acquisition, Monitoring and Control
Subcommittee formed a Task Force to review the communication protocols being used between
Intelligent Electronic Devices (IEDs) and Remote Terminal Units (RTUs) in substations.

The IEEE Task Force found a very confusing, constantly changing environment that was increasing the
cost and time to completion of substation SCADA systems. The IEEE Task Force collected information
on approximately 140 protocols and compared them to a list of communication protocol requirements.

This comparison resulted in a short list of protocols that met most of the requirements. This short list was
balloted and two serial SCADA protocols tied for being the most acceptable: IEC 60870-5-101 and
DNP3.

 DNP3 Overview Page 2 of 5

Revision 1.2, February 22, 2002 www.dnp.org
 www.TriangleMicroWorks.com

DNP3 was being supported by an active users group and was being implemented by an increasing
number of vendors. IEC 60870-5-101 was being implemented by an ever increasing number of
European vendors.

Both protocols had similar characteristics and strengths. The results of these efforts resulted in IEEE
Standard 1379-1997 “Trial Use Recommended Standard for Data Communication Between Intelligent
Electronic Devices and Remote Terminal Units in Substations”.

The recommendations proved to be well received with an ever increasing acceptance. Based on these
actions, the standard was updated in 1999 with a new ballot and became IEEE Standard 1379-200
“Recommended Practice for Data Communications Between Remote Terminal Units and Intelligent
Electronic Devices in Substations”.

2 Layered Architecture
DNP3 is a layered protocol. However, rather than adhering to the OSI (Open System Interconnection) 7
layer protocol, DNP3 adheres to a simplified 3 layer standard proposed by the IEC (International
Electrotechnical Commission) for more basic implementations. IEC calls this the Enhanced
Performance Architecture, or EPA. (However, DNP3 enhances EPA by adding a fourth layer, a pseudo-
transport layer that allows for message segmentation.)

2.1 Physical Layer
The physical layer is primarily concerned with the physical media over which the protocol is being
communicated. For example, it handles state of the media (clear or busy), and synchronization across the
media (starting and stopping). Most commonly, DNP is specified over a simple serial physical layer such
as RS-232 or RS-485 using physical media such as copper, fiber, radio or satellite. More recent
applications have implemented DNP3 over an Ethernet connection.

2.2 Data Link Layer
The data link layer manages the logical link between sender and receiver of information and it improves the
physical channel error characteristics. For, DNP3 this is accomplished by beginning each data link frame
with a data link header, and inserting a 16-bit CRC every 16 bytes of the frame. A frame is a portion of a
complete message communicated over the physical layer. The maximum size of a data link frame is 256
bytes. Each frame has a 16-bit source address and a 16-bit destination address, which may be a broadcast
address (0xffff). The address information, along with a 16-bit start code, the frame length, and a data link
control byte is contained in the 10-byte data link header.

The data link control byte indicates the purpose of the data link frame, and status of the logical link.
Possible data link control byte values include: ACK, NACK, link needs reset, link is reset, request data
link confirm (ACK) of frame, request link status, and link status reply. When a data link confirmation is
requested, the receiver must respond with an ACK data link frame if the frame is received and passes
CRC checks. If a data link confirmation is not requested, no data link response is required.

 DNP3 Overview Page 3 of 5

Revision 1.2, February 22, 2002 www.dnp.org
 www.TriangleMicroWorks.com

2.3 Pseudo-Transport Layer
The pseudo-transport layer segments application layer messages into multiple data link frames. For each
frame, it inserts a single byte function code that indicates if the data link frame is the first frame of the
message, the last frame of a message, or both (for single frame messages). The function code also
includes a rolling frame sequence number which increments with each frame and allows the receiving
transport layer to detect dropped frames.

2.4 Application Layer
The application layer responds to complete messages received (and passed up from the transport layer),
and builds messages based on the need for or the availability of user data. Once messages are built, they
are passed down to the pseudo-transport layer where they are segmented and passed to the data link layer
and eventually communicated over the physical layer. The total length of received messages is indicated
by pseudo-transport layer as it appends data link layer frames, each with their own indicated length.

When the data to be transmitted is too large for a single application layer message, multiple application
layer messages may be built and transmitted sequentially. However, each message is an independent
application layer message; their only association with each other is an indication in all but the last message
that more messages follow. Because of this possible fragmentation of application data, each application
layer message is referred to as a fragment, and a message may either be a single-fragment message or a
multi-fragment message.

Application layer fragments from Master DNP3 stations are typically requests for operations on data
objects, and application layer fragments from Slave DNP3 stations are typically responses to those
requests. A Slave DNP3 station may also transmit a message without a request (an unsolicited
response).

As in the data link layer, application layer fragments may be sent with a request for a confirmation. An
application layer confirmation indicates that a message has not only been received, but also been
parsed without error. (On the other hand, a data link layer confirmation, or ACK, indicates only that the
data link frame has been received and that it passes CRC error checks.)

Each application layer fragment begins with an application layer header followed by one or more object
header/object data combinations. The application layer header contains an application control code and
an application function code. The application control code contains an indication if the fragment is one
of a multi-fragment message, contains an indication if an application layer confirmation is requested for
the fragment, contains an indication if the fragment was unsolicited, and contains a rolling application
layer sequence number. The application layer sequence number allows the receiving application layer to
detect fragments that are out of sequence, or dropped fragments.

The application layer header function code indicates the purpose, or requested operation, of the message.
While DNP3 allows multiple data types in a single message, it only allows a single requested operation on
the data types within the message. Example function codes include: Confirm (for application layer
confirmations), read and write, select and operate (for select-before-operate, or SBO, controls), direct
operate (for operation of controls without SBO), freeze and clear (for counters), restart (both cold and
warm), enable and disable unsolicited messages, and assign class (discussed below). The application layer
header function code applies to all object headers, and therefore all data within the message fragment.

 DNP3 Overview Page 4 of 5

Revision 1.2, February 22, 2002 www.dnp.org
 www.TriangleMicroWorks.com

3 Database Organization
In DNP3, data is organized into data types. Each data type is an object group, including:

• binary inputs (single-bit read-only values),
• binary outputs (single-bit values whose status may be read, or that may be pulsed or latched

directly or through SBO type operations),
• analog inputs (multiple-bit read-only values),
• analog outputs (multiple-bit values whose status may be read, or that may be controlled directly or

through SBO type operations),
• counters,
• time and date,
• file transfer objects,
• and others.

For each object group, or data type, one or more data points exists. A data point is a single data value of
the type specified by its object group.

Also within each object group, object group variations exist. An object group variation is typically used
to indicate a different method of specifying data within the object group. For example, variations of
analog inputs allow for transfer of the data as 16-bit signed integer values, 32-bit signed integer values, or
as 32-bit floating point values.

As described above, an application layer message may contain multiple object headers. An object header
specifies an object group, a variation of the object group, and a range of points within that object group
variation. Some application layer header function codes indicate that object data follows each object
header; other function codes indicate that there is no object data in the message – instead multiple object
headers, if present, follow each other contiguously. For example, a read request message fragment only
contains object headers that describe the object groups, variations, and point ranges that are requested to
be read and responded; a read response message fragment contains object headers and the request object
data.

DNP3 allows object point ranges to be specified in a variety of ways. For request messages, object
points ranges may consist of

• a request for all points of the specified object group,
• a request for a contiguous range of points beginning with a specified starting point and ending

with a specified stopping point,
• a request for a maximum quantity of points,
• or with a list of requested points.

For response messages, object point ranges typically consist of either a contiguous range of points
beginning with a specified starting point and ending with a specified stopping point, or with a list of
points. For response object point ranges that consist of a list of points, a point number precedes each
data object. The number of points in the list is specified as part of the object point range.

 DNP3 Overview Page 5 of 5

Revision 1.2, February 22, 2002 www.dnp.org
 www.TriangleMicroWorks.com

4 Reporting Model
Many of the object groups have corresponding, but separate, object groups that contain change data.
Change data represents only points that have changed for a specifically corresponding object group. For
example, object group number 1 represents binary inputs (considered static data), and object group
number 2 represent binary input change data. When a point in object group 1 is detected to have
changed, a change event in object group 2 for the same point number is created. Including only points
that have changed in response messages allows smaller, efficient messages. Such reporting schemes are
called report-by-exception, or RBE.

For each change data point, a time can be associated with the change; each detection of a data value that
changes is considered a change event. At any given time, it is possible to have multiple change events
for some points, and no change events for other points.

In DNP3, object groups, and the data points within them, can be further organized into classes. This
provides an efficient method of requesting data; a simple (and small) message can be sent to request all
data in a specific class (referred to as scanning for class data). There are four classes defined in DNP3.
Class 0 represents all static (not change event data). Classes 1, 2, and 3, represent different priorities of
change event data. By associating different change event data with different classes, the classes can be
requested with varying periodic rates.

Assuming class 1 contains the highest priority change event data and class 3 contains the lowest priority
change event data, a class 1 poll would ideally be performed as often as possible, a class 2 poll would be
performed less often, and a class 3 poll would be performed even less often. For each class data response,
only the class data that has changed will be returned – keeping the response messages small and efficient.
Finally, to acquire data not associated with either class 1, 2, or 3, an integrity poll, consisting of a class 0
scan, would be performed. Because of the possibly large amount of data that will be returned in a class 0
scan, it may not be terribly efficient and should be performed as least often as possible.

End of Document

