Substation Communications Design -Legacy to IEC 61850

Part 2/3: Practical Application

Tim Wallaert Chris Jenkins

Your Utility Customer Tells You

"We're doing our first IEC 61850 substation and we want you to design the communication infrastructure to support it"

2

What Do You Do Now?

- A. Take the job
- B. Panic
- C. Try to talk them out of it
- D. Tell them you know how to design them a great communication infrastructure for IEC 61850 (with help from presentations such as this!)

E. All of the above

Topics Covered in this Presentation (and Why)

- Why the utility is implementing IEC 61850... (so you know what they hope to get out of it!)
- IEC 61850 Overview... (so you can speak their language)
- Environmental Conditions... (so you can understand why the environmental requirements are important in selecting a switch)
- Communication Requirements...
 (so you can design a solution that will work)
- Network Architectures...
 (so you can select the right one for the job)

What is IEC 61850?

- IEC 61850 is...
 - A standard for communication networks and systems for power utility automation
 - Defines an application-focused architecture
 - Defines environmental conditions
 - Translates all information into data models based on standard naming convention
 - Efficient engineering process of an application and integration of devices from multiple vendors
 - Much more than just a communication protocol
- IEC 61850 is NOT...
 - A guarantee of interoperability among different vendors

Why Does the Utility Care?

Project Stage	IEC 61850 Feature	Utility Benefit
Design	Substation Configuration Language (SCL)	Eliminates procurement ambiguity – get accurate quotes
Install	Data available to all devices on LAN	Reduces wiring costs (no more point to point wiring)
Startup	Reduced manual configuration of devices	Lower commissioning costs
Operate	Data available to other substations	Wide area protection schemes are now possible
Maintain	Device status data	Prevent unplanned downtime
Upgrade	Same naming convention in similar devices	New devices added without costly rework

Bottom line: Utilities can do more with their substation automation for less

Topics

- IEC 61850
- Environmental Conditions
- Communication Requirements
- Network Architecture

7

Historical Substation Protocols

Vendor-based

- Alstom Courier
- ABB SPA
- Siemens Profibus
- Schneider Modbus

Standard

- DNP3 (mostly North America)
- IEC 60870 (mostly Europe)

Problem

- Proprietary structures
- Different functionality
- No interoperability

Network Protocol

IEC

International Electro Technical Commission

"The IEC is the world's leading organization that prepares and publishes International Standards for all electrical, electronic and related technologies — collectively known as electro technology"

IEC 61850: COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION

IEC TC57 System Reference Architecture

Power Utility control system reference architecture from IEC TC 57 Source: IEC61850-1

What is IEC 61850?

- A standard for communication networks and systems for power utility automation
- Defines an application-focused architecture
- Defines environmental conditions
- Translates all information into data models based on standard naming convention
- Efficient engineering process of an application and integration of devices from multiple vendors
- Much more than just a communication protocol

What is IEC 61850?

Scope of application of IEC 61850

Source: IEC61850-1

Modeling

Basic Idea:

Complete description of a technical system (e.g. Substation) based on an object-oriented model

→ Not new, but in this dimension and kind of application very innovative

Reference model for information flow in the configuration process

Source: IEC61850-6:2010

The Substation Configuration Language

The Standard IEC 61850 - Edition 1

\rightarrow International standard since 2003

System Aspects	Data Models	
Part 1: Introduction and	Basic Communication Structure for	
Overview	Substations and Feeder Equipment	
Part 2: Glossary	Part 7-4: Compatible Logical Node Classes and	
Part 3: General Requirements	Data Classes	
Part 4: System and Project	Part 7-3: Common Data Classes	
Management	Abstract Comm. Services	
Part 5: Comm Requirements	Basic Communication Structure for	
for Functions and	Substations and Feeder Equipment	
Device Models	Part 7-2: Abstract Communication Services (ACSI)	
Configuration	Part 7-1: Principles and Models	
guage for electrical Substation IED's	Mapping to real Comm. Networks (SCSM) Part 8-1: Mapping to MMS and ISO/IEC 8802-3 Part 9-1: Sampled Values over Serial Unidirectional	
Testing	Multidrop Point-to-Point link	
Part 10: Conform. Testing	Part 9-2: Sampled Values over ISO/IEC 8802-3	

MMS: Manufacturing Massaging Specification

The Standard IEC 61850 - Edition 2

IEC 61850 ongoing work in IEC TC57

- \rightarrow Extensions of the existing standards (Edition 2)
- \rightarrow Addresses additional topics:

- → part 7-410 Hydroelectric power plants Communication for monitoring and control
- → part 7-420 Communications systems for distributed energy resources (DER)
- \rightarrow part 80-1 Guideline to exchange information from a CDC based data model using

IEC 60870-5-101/104

- → part 90-1 Using IEC 61850 for the communication between substations
- → part 90-2 Using IEC 61850 for the communication between substations and control centres
- → part 90-3 Condition Monitoring
- → part 90-4 Communication Network Engineering Guideline
- → part 90-5 Use of IEC 61850 to transmit synchrophasor information
- → Target: approval in 2012 2013

IEC 61400-25: Communications for monitoring and control of wind power plants

→ based on IEC 61850

Hirschmann Is an Active Contributor IEC 61840

Communication Network Engineering Guideline

IEC 61850-90-4 ⊚ IEC;2010 Draft WD IEC 61850-90-4_101001	– 1 / 82 – _НК	57/WG10 (61850)/WD	IEC TECHNICAL COMMITTEE
Communication N Part 90-4:	etworks and System Network En Technical Report	ns in Substations gineering Guidelines.	

Provides definitions and specifications for the Ethernet network architecture of IEC 61850 based systems.

1	Scope	8
2	Normative references	9
3	Terms, definitions, abbreviated terms, acronyms and conventions	10
4	Overview of IEC 61850 networks	17
5	Network design checklist	23
6	Ethernet Technology for substations	27
7	Network and substation topologies	47
8	Network IP address plan	82
9	Application parameters	85
10	Performance	85
11	Latency	88
12	Traffic control	92
13	Dependability	101
14	Clock Synchronization	103
15	Network security	116
16	Network management	116
17	Remote connectivity	118
18	Network testing	118
Ani	nex A (informative) IEC 61850 bridge object model	125
An	nex B (informative) IEC 61588 Clock model	137
Ani	nex C (informative) Case study - Process Bus configuration for busbar protection system	141
Ani	nex D (informative) Case study -An IEC 61850 Station Bus (Powerlink, Australia)	145
Ani	nex E (informative) Case study – Simple Topologies (Transener/Transba, Argentina)	160
An	nex F (informative) Case Study - Station Bus with VLANs (Trans-Africa, South Africa)	169

1	Scope		8
2	Normative references		9
3	Terms, definitions, abbreviated terms, acronyms and conver	tions	10
4	Overview of IEC 61850 networks		17
5	Network design checklist		23
6	Ethernet Technology for substations	IEC 61950 Traffi	
7	Network and substation topologies		C 0103363
8	Network IP address plan	MMS, GOOS	SE, SV
9	Application parameters	Station Bus and F	Process Bus
10	Performance		85
11	Latency		88
12	Traffic control		92
13	Dependability		101
14	Clock Synchronization		103
15	Network security		116
16	Network management		116
17	Remote connectivity		118
18	Network testing		118
Ani	nex A (informative) IEC 61850 bridge object model		125
Ani	nex B (informative) IEC 61588 Clock model		137
Ani	nex C (informative) Case study - Process Bus configuration f	or busbar protection system	141
Ani	nex D (informative) Case study -An IEC 61850 Station Bus (F	Powerlink, Australia)	145
Ani	nex E (informative) Case study – Simple Topologies (Transen	er/Transba, Argentina)	160
Ani	nex F (informative) Case Study - Station Bus with VLANs (Tr	ans-Africa, South Africa)	169

CONTENTS	
1 Scope	8
2 Normative references	9
3 Terms, definitions, abbreviated terms, acronyms and conventions	10
4 Overview of IEC 61850 networks	17
5 Network design checklist	23
6 Ethernet Lechnology for substations	27
7 Network and substation topologies	Criteria to be considered when
8 Network IP address plan	
9 Application parameters	planning a substation network
10 Performance	CO.
11 Latency	88
12 Traffic control	92
13 Dependability	101
14 Clock Synchronization	103
15 Network security	116
16 Network management	116
17 Remote connectivity	118
18 Network testing	118
Annex A (informative) IEC 61850 bridge object model	125
Annex B (informative) IEC 61588 Clock model	137
Annex C (informative) Case study - Process Bus configuration for busbar pr	otection system 141
Annex D (Informative) Case study -An IEC 61850 Station Bus (Powerlink, A	ustralia) 145
Annex E (informative) Case study - Simple Topologies (Transener/Transba,	Argentina) 160
Annex F (informative) Case Study - Station Bus with VI ANs (Trans-Africa 3	South Africa) 169

1	Scope	8	
2	Normative references	9	
3	Terms, definitions, abbreviated terms, acronyms and conventions	10	
4	Overview of IEC 61850 networks	17	
5	Network design checklist	23	
6	Ethernet Technology for substations	27	
1	Network and substation topologies	47	
8	Network IP address plan	Introduction to Etherne	4
9	Application parameters		
10	Performance	specific aspects	
11	Latency	(cabling, physical layer, filter	ring,
12	Traffic control		
13	Dependability		y)
14	Clock Synchronization	103	
15	Network security	116	
16	Network management	116	
17	Remote connectivity	118	
18	Network testing	118	
Ani	nex A (informative) IEC 61850 bridge object model	125	
An	nex B (informative) IEC 61588 Clock model	137	
Ani	nex C (informative) Case study - Process Bus configuration for busbar pr	rotection system 141	
Ani	nex D (informative) Case study -An IEC 61850 Station Bus (Powerlink, A	Australia) 145	
An	nex E (informative) Case study - Simple Topologies (Transener/Transba,	Argentina) 160	
An	nex F (informative) Case Study - Station Bus with VLANs (Trans-Africa, 3	South Africa) 169	

	CONTENTS		
1	Scope	8	
2	Normative references	9	
3	Terms, definitions, abbreviated terms, acronyms and conventions	10	
4	Overview of IEC 61850 networks	17	
5	Network design checklist	23	
6	Ethernet Technology for substations	27	
7	Network and substation topologies		
8	Network IP address plan	Reference	• Topologies for
9	Application parameters	station bus	and process bus
10	Performance	(ctor ring	buc moch
11	Latency	(star, my,	bus, mesn,)
12	Traffic control	92	
13	Dependability	101	
14	Clock Synchronization	103	
15	Network security	116	
16	Network management	116	
17	Remote connectivity	118	
18	Network testing	118	
Anr	nex A (informative) IEC 61850 bridge object model	125	
Anr	nex B (informative) IEC 61588 Clock model	137	
Anr	nex C (informative) Case study - Process Bus configuration for busbar prote	ction system 141	
Anr	nex D (informative) Case study -An IEC 61850 Station Bus (Powerlink, Austr	alia) 145	
Anr	nex E (informative) Case study – Simple Topologies (Transener/Transba, Arg	gentina) 160	
Ann	nex F (informative) Case Study - Station Bus with VLANs (Trans-Africa, Sou	th Africa) 169	

1	Scope	8
2	Normative references	9
3	Terms, definitions, abbreviated terms, acronyms and conventions	10
4	Overview of IEC 61850 networks	17
5	Network design checklist	23
6	Ethernet Technology for substations	27
7	Network and substation topologies	47
8	Network IP address plan	0.2
9	Application parameters IP addre	essing schemes
10	Performance	
11	Latency	88
12	Traffic control	92
13	Dependability	101
14	Clock Synchronization	103
15	Network security	116
16	Network management	116
17	Remote connectivity	118
18	Network testing	118
Ann	ex A (informative) IEC 61850 bridge object model	125
Ann	ex B (informative) IEC 61588 Clock model	137
Ann	ex C (informative) Case study - Process Bus configuration for busbar protection system	n 141
Ann	ex D (informative) Case study -An IEC 61850 Station Bus (Powerlink, Australia)	145
Ann	ex E (informative) Case study – Simple Topologies (Transener/Transba, Argentina)	160
Ann	ex F (informative) Case Study - Station Bus with VLANs (Trans-Africa, South Africa)	169

14 Clock Synchronization

CONTENTS

1	Scope	8
2	Normative references	9
3	Terms, definitions, abbreviated terms, acronyms and conventions	10
4	Overview of IEC 61850 networks	17
5	Network design checklist	23
6	Ethernet Technology for substations	27
7	Network and substation topologies	47
8	Network IP address plan	82
9	Application parameters	85
10	Performance	85
11	Latency	88
12	Traffic control	02
13	Dependability	Latency and c

Latency and delay aspects

1	Scope		8
2	Normative references		9
3	Terms, definitions, abbreviated terms, acronyms and conventions		10
4	Overview of IEC 61850 networks		17
5	Network design checklist		23
6	Ethernet Technology for substations		27
7	Network and substation topologies		47
8	Network IP address plan		82
9	Application parameters		85
10	Performance		85
11	Latency		88
12	Traffic control		92
13	Dependability		101
14	Clock Synchronization	Traffic n	nanagement
15	Network security	(multicast con	trol segmentation
16	Network management		
17	Remote connectivity	VLAN m	lanagement)
18	Network testing		110
Ani	nex A (informative) IEC 61850 bridge object model		125
Ani	nex B (informative) IEC 61588 Clock model		137
Ani	nex C (informative) Case study – Process Bus configuration for bust	par protection system	141
An	nex D (informative) Case study -An IEC 61850 Station Bus (Powerli	nk, Australia)	145
An	nex E (informative) Case study – Simple Topologies (Transener/Tra	nsba, Argentina)	160
An	Annex F (informative) Case Study - Station Bus with VLANs (Trans-Africa, South Africa)		169

CONTENTS

1	Scope	8
2	Normative references	9
3	Terms, definitions, abbreviated terms, acronyms and conventions	10
4	Overview of IEC 61850 networks	17
5	Network design checklist	23
6	Ethernet Technology for substations	27
7	Network and substation topologies	47
8	Network IP address plan	82
9	Application parameters	85
10	Performance	85
11	Latency	88
12	Traffic control	92
13	Dependability	

Time synchronization 14 Clock Synchronization (use of NTP, PPS, IRIG-B, PTP) 15 Network security 16 Network management 118 17 Remote connectivity 18 Network testing 118 Annex A (informative) IEC 61850 bridge object model 125 137 Annex B (informative) IEC 61588 Clock model Annex C (informative) Case study - Process Bus configuration for busbar protection system 141 Annex D (informative) Case study -An IEC 61850 Station Bus (Powerlink, Australia) 145 Annex E (informative) Case study - Simple Topologies (Transener/Transba, Argentina) 160 Annex F (informative) Case Study - Station Bus with VLANs (Trans-Africa, South Africa) 169

1	Scope	8
2	Normative references	9
3	Terms, definitions, abbreviated terms, acronyms and convention	s 10
4	Overview of IEC 61850 networks	17
5	Network design checklist	23
6	Ethernet Technology for substations	27
7	Network and substation topologies	47
8	Network IP address plan	82
9	Application parameters	85
10	Performance	85
11	Latency	88
12	Traffic control	92
13	Dependability	101
14	Clock Synchronization	103
15	Network security	116
16	Network management	116
17	Remote connectivity	118
18	Network testing	
Anr	nex A (informative) IEC 61850 bridge object model	Network management
Anr	nex B (informative) IEC 61588 Clock model	(use of SNMP. 61850 services
Anr	nex C (informative) Case study – Process Bus configuration for b	
Anr	nex D (informative) Case study -An IEC 61850 Station Bus (Powe	rlink, Australia) 145
Anr	nex E (informative) Case study – Simple Topologies (Transener/T	ransba, Argentina) 160
Ann	nex F (informative) Case Study - Station Bus with VLANs (Trans-	Africa, South Africa) 169

CONTENTS

1 Scope	8
2 Normative references	9
3 Terms, definitions, abbreviated terms, acronyms and conventi	ons 10
4 Overview of IEC 61850 networks	17
5 Network design checklist	23
6 Ethernet Technology for substations	27
7 Network and substation topologies	47
8 Network IP address plan	82
9 Application parameters	85
10 Performance	85
11 Latency	88
12 Traffic control	92
13 Dependability	101
14 Clock Synchronization	103
15 Network security	116
16 Network management	116
17 Remote connectivity	118
18 Network testing	Testing the communicatio
Annex A (informative) IEC 61850 bridge object model	network
Annex B (informative) IEC 61588 Clock model	network
Annex C (informative) Case study - Process Bus configuration for	busbar protection system 141
Annex D (informative) Case study -An IEC 61850 Station Bus (Po	werlink, Australia) 145
Annex E (informative) Case study - Simple Topologies (Transener	r/Transba, Argentina) 160
Annex F (informative) Case Study - Station Bus with VLANs (Tran	s-Africa, South Africa) 169

n

1	Scope	8	
2	Normative references	9	
3	Terms, definitions, abbreviated terms, acronyms and conventions	10	
4	Overview of IEC 61850 networks	17	
5	Network design checklist	23	
6	Ethernet Technology for substations	27	
7	Network and substation topologies	47	
8	Network IP address plan	82	
9	Application parameters	85	
10	Performance	85	
11	Latency	88	
12	Traffic control	92	
		110 000	
13	Dependability	101	
13 14	Clock Synchronization	101	Case studies
13 14 15	Clock Synchronization Network security	101	Case studies:
13 14 15 16	Clock Synchronization Network security Network management	IEC 6	Case studies: 1850 project examples
13 14 15 16 17	Clock Synchronization Network security Network management Remote connectivity	IEC 6	Case studies: 1850 project examples
13 14 15 16 17 18	Clock Synchronization Network security Network management Remote connectivity Network testing	101 IEC 6	Case studies: 1850 project examples
13 14 15 16 17 18 Anr	Clock Synchronization Network security Network management Remote connectivity Network testing mex A (informative) IEC 61850 bridge object model	101 IEC 6 118 125	Case studies: 1850 project examples
13 14 15 16 17 18 Anr	Clock Synchronization Network security Network management Remote connectivity Network testing nex A (informative) IEC 61850 bridge object model	101 IEC 6 118 125 137	Case studies: 1850 project examples
13 14 15 16 17 18 Anr Anr Anr	Clock Synchronization Network security Network management Remote connectivity Network testing mex A (informative) IEC 61850 bridge object model mex B (informative) IEC 61588 Clock model mex C (informative) Case study – Process Bus configuration for busbar protection system	101 IEC 6 118 125 137 141	Case studies: 1850 project examples
13 14 15 16 17 18 Anr Anr Anr Anr	Clock Synchronization Network security Network management Remote connectivity Network testing mex A (informative) IEC 61850 bridge object model mex B (informative) IEC 61588 Clock model mex C (informative) Case study – Process Bus configuration for busbar protection system mex D (informative) Case study – An IEC 61850 Station Bus (Powerlink, Australia)	101 IEC 6 118 125 137 141 145	Case studies: 1850 project examples
13 14 15 16 17 18 Anr Anr Anr Anr Anr	Clock Synchronization Network security Network management Remote connectivity Network testing mex A (informative) IEC 61850 bridge object model mex B (informative) IEC 61588 Clock medel mex C (informative) Case study – Process Bus configuration for busbar protection system mex D (informative) Case study – An IEC 61850 Station Bus (Powerlink, Australia) mex E (informative) Case study – Simple Topologies (Transener/Transba, Argentina)	101 IEC 6 118 125 127 141 145 160	Case studies: 1850 project examples

Hirschmann Contributes to Many Standards

Hirschmann is actively working in many standardization organizations:

- Member of **DKE K 952** (German national committee "Netzleittechnik")
- Member of IEC TC57 WG10 (Power system IED communication and associated data models)
- Member of **IEC SC65C WG 15** (High Availability Automation Networks)
- Member of **IEEE1588** (Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems)
- Contributing to IEEE PSRC H7 (IEEE 1588 Profile for Protection Applications)
- Working in IEEE802.1 (LAN/MAN Standards Committee)

Contents

- IEC 61850
- Environmental Conditions
- Communication Requirements
- Network Architecture

Substation Environmental Conditions

- Electric fields
- Magnetic fields
- Electrostatic discharge
- High energy power surges
- Ground potential rise during ground faults
- Temperature & humidity
- Vibration
- Condensation

Some More Examples

© 2014 Belden Inc. | belden.com | @BeldenInc 34

RFI Immunity Requirements

- IEC 61850-3 Communications Systems and Networks in Substations (Section 5.7)
- IEEE 1613 IEEE Standard Environmental and Testing Requirements for Communications Networking Devices in Electric Power Substations

EMI for Substations

- IEC 61850-3 Communications Networks and Systems in Substations – Part 3: General Requirements.
- General immunity standard:
 - IEC 61000-4-x series basic immunity standard
 - IEC 61000-6-2/-4 for industrial devices
 - IEC 61000-6-5 special enhancements for substations

EMI Immunity Requirements

Communications Networks and Systems in Substations – Part 3: General Requirements

Immunity for Power Station and Substation Environments

for industrial devices

Basic Immunity Standards

Climatic Requirements – IEC 61850

- 1. Class A: air-conditioned locations
- 2. Class B: heated or cooled enclosed conditions
- 3. Class C: sheltered locations
- 4. Class D: outdoor locations

Class C Operating Temperature Ranges:

- 1. Class C1: -5 to +45°C
- 2. Class C2: -25 to +55°C
- 3. Class C3: -40 to +70°C
- 4. Class Cx: Special (defined by manufacturer)

What about the network equipment?

- No "standard" substation switch
- The network should not be the weakest link
- Switches must pass the same EMI tests as the IEDs

Transmission Media

Fibre

- Immunity to electrical interference
- Avoidance of ground loops
- Large bandwidth
- Extended distances

• Copper

- Control room cabinets
- Links to IEDs

Contents

✓ IEC 61850

- Environmental Conditions
- Communication Requirements
- Network Architecture

Logical communication substation

Figure 8 - Station Bus, Process Bus and traffic example

Logical communication substation

Vertical

- Bay to Substation level
- Control and monitoring
- Client / Server
- →Low priority

Horizontal

- Time critical data between IEDs
- Automation
- \rightarrow High priority

Figure 8 - Station Bus, Process Bus and traffic example

Communication- conventional cabling (yesterday)

Communication - Station bus LAN Process bus conventional (today)

Substation – Station bus LAN / Process level conventional (today)

Communication- Station and Process LAN (future)

Substation – Station and Process LAN (tomorrow)

Power Distribution - In the Past

Power Distribution - In the Future (present)

Decentralized Power Generation and Smart Grid

- Decentralized power generation is increasing strongly
 - → Photovoltaic
 - → Wind energy
 - → Combined heat and power
 - → Fuel cells
 - ➔ Biomass
 - ➔ Hydro power
- Strong fluctuations of produced energy results in need of <u>D</u>ecentralize <u>E</u>nergy <u>M</u>anagement <u>S</u>ystem to balance supply and demand in real time = SMART GRID
- \rightarrow IT and communication are necessary

Source: EWE AG

IEC 61850 Communication

MMS = Manufacturing Messaging Specification GOOSE = Generic Object Oriented Substation Event

IEC 61850 Communication → today

Sampled Values and GOOSE: High MAC Multicast traffic

Today: GOOSE Multicasts on Station level approx. 10-20 devices \rightarrow network uncritical

Source: UTInnovation & NettedAutomation

Adaptive GOOSE Transmission Time

- T0 retransmission in stable conditions (no event for a long time).
- (T0) retransmission in stable conditions may be shortened by an event.
- T1 shortest retransmission time after the event.
- T2, T3 retransmission times until achieving the stable conditions time.

IEC 142/04

Adaptive GOOSE Transmission Time

GOOSE protocol Fast and efficient communication

- Prioritization
- multicast

GOOSE (Generic Object Oriented Substation Event)

IEC 61850 Communication → future

Future: Sampled Values and GOOSE communication via Ethernet network → new technology necessary

Source: UTInnovation & NettedAutomation

need for intelligent Multicast control (MMRP) to handle SV and GOOSE

→ Working group (61850-90-4)

IEC 61850 Communication

Source: UTInnovation & NettedAutomation

IEC 61850 Communication – IEEE1588 Time Synchronization

cascaded boundary clocks

cascaded transparent clocks

BC: point to point synchronization, cascading of control loops

TC: corrects only residence time, transparent for end devices (Grandmaster, Master, Ordinary Clock)

A TC causes less jitter in highly cascaded networks

IEC 61850 Communication

Sensor data: Sampled Values

Each sensor data packet should reach the destination! (at least each second)

→ Special requirements for the redundancy No data loss because of recovery times!

→ No recovery time is acceptable RSTP, MRP or any other available technology does not fulfill the requirements. ...up to now

Contents

- ✓ IEC 61850
- Environmental Conditions
- **Communication Requirements**
- Network Architecture

Network topologies

CONTENTS

1	Scope	13
2	Normative references	14
3	Terms, definitions, abbreviated terms, acronyms and conventions	15
4	Overview of IEC 61850 networks	21
5	Network design checklist	26
6	Ethernet Technology for substations	30
7	Network topologies	50
8	Dependability issues	75
9	Network configuration - assignment of IP addresses	77
10	Performance issues	80
11	Quality of service	83
12	Latency requirements for different types of traffic	84
13	Traffic control	86
14	Clock Synchronization	96
15	Network security	108
16	Network management	108
17	Engineering access	109
18	Network testing	109
An	nex A (informative) IEC 61850 bridge object model	117
An	nex B (informative) IEEE 1588 Clock model	130
An	nex C (informative) Case study – Process Bus configuration for busbar protection system	131
An	nex D (informative) Case study –An IEC 61850 Station Bus (Powerlink, Australia)	136
An	nex E (informative) Case study – Simple Topologies (Transener/Transba, Argentina)	153
An	nex F (informative) Case Study – Station Bus configuration in a sophisticated application VLANs (Trans-Africa, South Africa)	with 156

Network topologies

The standard describes several topologies:

"These reference topologies were chosen based on common practice in substation automation systems ranging from small distribution systems to large multi-voltage level substations. They are representative of the various networking issues described in this document. There is no 'best' network topology and no 'best'

They all have strengths and weaknesses and the correct choice for a given application depends on many factors." Source: IEC61850 Network Engineering Guideline

Included in the Guideline are

Topologies:

Star, Ring / Multi-Ring and double networks. There is no clear recommendation but a trend to ring structures.

Redundancy technologies:

RSTP – IEC 62439-1 PRP HSR

CONTENTS

Cascade Architecture

Ring Architecture

Star Architecture

Hybrid Architecture

Ring Extension: Sub-Ring Concept

Comparison of Redundancy Protocols defined in IEC62439

					Available
	Protocol	Most current Standard	Typical re-config	Remark	since
				any topology/mesh, diameter	
STP	Spanning Tree Protocol	IEEE 802.1d	30s	limited	1990
				any topology/mesh, diameter	
RSTP	Rapid Spanning Tree Protocol	IEEE 802.1D-2004	2s	limited	2004
	Cross-Network Redundancy		1s worst case for 512 end	any topology/ duplicated	
CRP	Protocol	IEC 62439-4:2010	nodes	networks	2007
			48ms worst case for 500	Two top level switches with star,	
BRP	Beacon Redundancy Protocol	IEC 62439-5:2010	end nodes	line or ring topologies	2007
	Distributed Redundancy		100ms worst case for 50		
DRP	Protocol	IEC 62439-6:2010	switches	ring, double ring	2010
			200ms worst case for 50		
MRP	Media Redundancy Protocol	IEC 62439-2:2010	switches	ring	1998/2007
			30ms worst case for 50		
			switches		
			10ms worst case for 15		
Fast MRP	Media Redundancy Protocol	IEC 62439-2:2010	switches	ring	2010
	1	IEEE 802.1D-2004 (configuration			
Optimized		requirements described in IEC			
RSTP	Rapid Spanning Tree Protocol	62439-1:2010)	520ms per switch	ring	2010
	High-Availability Seamless				
HSR	Redundancy	IEC 62439-3:2012-07	Oms	ring	2010
PRP	Parallel Redundancy Protocol	IEC 62439-3:2012-07	0ms	any toplogy/ duplicated networks	2010

⁽¹⁾ pre-standard Hiper Ring since 1998, MRP since 2007

⁽²⁾ pre-standard Fast Hiper Ring since 2007

Zero failover – duplicated networks

- Two redundant networks
- By doubling the packets no data loss if one packet fails
- PRP-Redundancy-Box = bidirectional splitter and combiner

Zero failover – duplicated networks

No packet loss Zero failover – duplicated networks example standard LAN with MRP Non PRP Non PRP devices devices Standard LAN ----------RSP RSP SAN SAN IEC62439 PRP Network = Ξ AVVA SAN SAN 븙 Ξ SAN SAN

© 2014 Belden Inc. | belden.com | @BeldenInc 75

Zero failover – duplicated networks

example standard LAN with wireless

Zero failover – duplicated networks example standard LAN with MRP and several "Red boxes"

© 2014 Belden Inc. | belden.com | @BeldenInc 77

HSR (High Available Seamless Ring)

HSR (High Available Seamless Ring)

IEC 61850 Integration in Switches

Management of Switches by use of IEC 61850 Mechanisms

IEC 61850 Server

IEC 61850 SCADA Workstation

Additional Resources & Assistance

- 1. Obtain further Substation Communication resources from our website:
 - www.belden.com/power-td/
 - This webpage includes substation communication diagrams and other useful tools
- 3. Contact a Belden representative for assistance:
 - Call 510-438-9071 if you are in the U.S. or Canada
 - Or complete the form at <u>www.belden.com/contact/</u>

Thank you for your interest in this presentation!

