
11/17/2014 Observing the Havex RAT - NETRESEC Blog

http://www.netresec.com/?page=Blog&month=2014-11&post=Observing-the-Havex-RAT 1/5

Experts in network security monitoring and network forensics

Wednesday, 12 November 2014 21:09:00 (UTC/GMT)

Observing the Havex RAT
It has, so far, been publicly reported that
three ICS vendors have spread the Havex
Remote-Access-Tool (RAT) as part of their
official downloads. We've covered the six
pieces of software from these three vendors
in our blog post ”Full Disclosure of Havex
Trojans”. In this blog post we proceed by
analyzing network traffic generated by
Havex.

Indicators of Compromise

Before going into details of our analysis we'd like to recommend a few other resources
that can be used to detect the Havex RAT. There are three Havex IDS signatures
available via Emerging Threats. There are also Yara rules and OpenIOC signatures
available for Havex. Additionally, the following domains are known to be used in the
later versions (043 and 044) of Havex according to Kaspersky:

disney.freesexycomics.com
electroconf.xe0.ru
rapidecharge.gigfa.com
sinfulcelebs.freesexycomics.com
www.iamnumber.com

HTTP Command-and-Control

The Havex RAT Command-and-Control (C2) protocol is based on HTTP POST requests,
which typically look something like this:

POST /blogs/wp-content/plugins/buddypress/bp-settings/bpsettings-src.php?
id=84651193834787196090098FD80-c8a7af419640516616c342b13efab&v1=043&
v2=170393861&q=45474bca5c3a10c8e94e56543c2bd

As you can see, four variables are sent in the QueryString of this HTTP POST request;
namely id, v1, v2 and q. Let's take a closer look to see what data is actually sent to
the C2 server in the QueryString.

Param Description Common Values

id host identifier id=[random number][random hex]-c8a7af419640516616c342b13efab
id=[random number][random-hex]-003f6dd097e6f392bd1928066eaa3

v1 Havex version 043
044

v2 Windows version 170393861 (Windows XP)
498073862 (Windows 7)
498139398 (Windows 7, SP1)

q Unknown q=45474bca5c3a10c8e94e56543c2bd (Havex 043)
q=0c6256822b15510ebae07104f3152 (Havex 043)
q=214fd4a8895e07611ab2dac9fae46 (Havex 044)
q=35a37eab60b51a9ce61411a760075 (Havex 044)

Analyzing a Havex PCAP

Recent Blog Posts

» Observing the Havex RAT

» Full Disclosure of Havex
Trojans

» Chinese MITM Attack on iCloud

» Verifying Chinese MITM of
Yahoo

» Analysis of Chinese MITM on
Google

» Running NetworkMiner on Mac
OS X

» NetworkMiner 1.6 Released

» PCAP or it didn't happen

Blog Archive

» 2014 November
» 2014 October
» 2014 September
» 2014 June
» 2014 May
» 2014 April
» 2014 March
» 2014 February
» 2013 October
» 2013 September
» 2013 August
» 2013 April
» 2013 February
» 2013 January
» 2012 December
» 2012 November
» 2012 September
» 2012 August
» 2012 July
» 2012 June
» 2012 April
» 2012 January
» 2011 December
» 2011 November
» 2011 October
» 2011 September
» 2011 August
» 2011 July
» 2011 June
» 2011 May
» 2011 April
» 2011 March
» 2011 February
» 2011 January

List all blog posts

Grab our FeedBurner or RSS feed

NETRESEC | Products | Resources | Blog | About Netresec |

NETRESEC > Blog

http://www.netresec.com/?page=Home
http://www.netresec.com/?page=Products
http://www.netresec.com/?page=Resources
http://www.netresec.com/?page=Blog
http://www.netresec.com/?page=AboutNetresec

11/17/2014 Observing the Havex RAT - NETRESEC Blog

http://www.netresec.com/?page=Blog&month=2014-11&post=Observing-the-Havex-RAT 2/5

I had the pleasure to discuss the Havex Malware with Joel Langill, when we met at the
4SICS conference in Stockholm last month. Joel was nice enough to provide me with a
800 MB PCAP file from when he executed the Havex malware in an Internet connected
lab environment.

Image: CapLoader transcript of Havex C2 traffic

I used the command line tool NetworkMinerCLI (in Linux) to automatically extract all
HTTP downloads from Joel's PCAP file to disk. This way I also got a CSV log file with
some useful metadata about the extracted files. Let's have a closer look at what was
extracted:

$ mono NetworkMinerCLI.exe -r new-round-09-setup.pcap
Closing file handles...
970167 frames parsed in 1337.807 seconds.

$ cut -d, -f 1,2,3,4,7,12 new-round-09-setup.pcap.FileInfos.csv | head

SourceIP SourcePort DestinationIP DestinationPort FileSize Frame
185.27.134.100 TCP 80 192.168.1.121 TCP 1238 244 676 B 14
198.63.208.206 TCP 80 192.168.1.121 TCP 1261 150 B 1640
185.27.134.100 TCP 80 192.168.1.121 TCP 1286 359 508 B 3079
185.27.134.100 TCP 80 192.168.1.121 TCP 1311 236 648 B 4855
185.27.134.100 TCP 80 192.168.1.121 TCP 1329 150 B 22953
185.27.134.100 TCP 80 192.168.1.121 TCP 1338 150 B 94678
185.27.134.100 TCP 80 192.168.1.121 TCP 1346 150 B 112417
198.63.208.206 TCP 80 192.168.1.121 TCP 1353 150 B 130108
198.63.208.206 TCP 80 192.168.1.121 TCP 1365 150 B 147902

Files downloaded through Havex C2 communication are typically modules to be
executed. However, these modules are downloaded in a somewhat obfuscated format;
in order to extract them one need to do the following:

Base64 decode
Decompress (bzip2)
XOR with ”1312312”

To be more specific, here's a crude one-liner that I used to calculate MD5 hashes of
the downloaded modules:

$ tail -c +95 C2_download.html | base64 -d | bzcat -d | xortool-xor -s
"1312312" -f - -n | tail -c +330 | md5sum

NETRESEC on Twitter

Follow @netresec on twitter:
» twitter.com/netresec

Recommended Books

» The Practice of Network
Security Monitoring, Richard
Bejtlich (2013)

» Applied Network Security
Monitoring, Chris Sanders and
Jason Smith (2013)

» Network Forensics, Sherri
Davidoff and Jonathan Ham
(2012)

» The Tao of Network Security
Monitoring, Richard Bejtlich
(2004)

» Practical Packet Analysis, Chris
Sanders (2011)

» Windows Forensic Analysis,
Harlan Carvey (2009)

» TCP/IP Illustrated, Volume 1,
Kevin Fall and Richard Stevens
(2011)

» Industrial Network Security, Eric
D. Knapp and Joel Langill (2014)

11/17/2014 Observing the Havex RAT - NETRESEC Blog

http://www.netresec.com/?page=Blog&month=2014-11&post=Observing-the-Havex-RAT 3/5

To summarize the output from this one-liner, here's a list of the downloaded modules
in Joel's PCAP file:

First
frame

Last
frame

Downloaded HTML MD5 Extracted module MD5

14 293 7818cb3853eea675414480892ddfe668 7cff1403546eba915f1d7c023f12a0df

3079 1642 9b20948513a1a4ea77dc3fc808a5ebb9 840417d79736471c2f331550be993d79

4855 5117 fb46a96fdd53de1b8c5e9826d85d42d6 ba8da708b8784afd36c44bb5f1f436bc

All three extracted modules are known binaries associated with Havex. The third
module is one of the Havex OPC scanner modules, let's have a look at what happens
on the network after this module has been downloaded!

Analyzing Havex OPC Traffic

In Joel's PCAP file, the OPC module download finished at frame 5117. Less then a
second later we see DCOM/MS RPC traffic. To understand this traffic we need to know
how to interpret the UUID's used by MS RPC.

Marion Marschalek has listed 10 UUID's used by the Havex OPC module in order to
enumerate OPC components. However, we've only observed four of these commands
actually being used by the Havex OPC scanner module. These commands are:

MS RPC UUID OPC-DA Command

9dd0b56c-ad9e-43ee-8305-487f3188bf7a IOPCServerList2

55c382c8-21c7-4e88-96c1-becfb1e3f483 IOPCEnumGUID

39c13a4d-011e-11d0-9675-0020afd8adb3 IOPCServer

39227004-a18f-4b57-8b0a-5235670f4468 IOPCBrowse

Of these commands the ”IOPC Browse” is the ultimate goal for the Havex OPC scanner,
since that's the command used to enumerate all OPC tags on an OPC server. Now, let's
have a look at the PCAP file to see what OPC commands (i.e. UUID's) that have been
issued.

$ tshark -r new-round-09-setup.first6000.pcap -n -Y 'dcerpc.cn_bind_to_uuid
!= 99fcfec4-5260-101b-bbcb-00aa0021347a' -T fields -e frame.number -e ip.dst
-e dcerpc.cn_bind_to_uuid -Eoccurrence=f -Eheader=y

frame.nr ip.dst dcerpc.cn_bind_to_uuid
5140 192.168.1.97 000001a0-0000-0000-c000-000000000046
5145 192.168.1.11 000001a0-0000-0000-c000-000000000046
5172 192.168.1.97 000001a0-0000-0000-c000-000000000046
5185 192.168.1.11 9dd0b56c-ad9e-43ee-8305-487f3188bf7a
5193 192.168.1.97 000001a0-0000-0000-c000-000000000046
5198 192.168.1.11 55c382c8-21c7-4e88-96c1-becfb1e3f483
5212 192.168.1.11 00000143-0000-0000-c000-000000000046
5247 192.168.1.11 000001a0-0000-0000-c000-000000000046
5257 192.168.1.11 00000143-0000-0000-c000-000000000046
5269 192.168.1.11 00000143-0000-0000-c000-000000000046
5274 192.168.1.11 39c13a4d-011e-11d0-9675-0020afd8adb3
5280 192.168.1.11 39c13a4d-011e-11d0-9675-0020afd8adb3
5285 192.168.1.11 39227004-a18f-4b57-8b0a-5235670f4468
5286 192.168.1.11 39227004-a18f-4b57-8b0a-5235670f4468
[...]

We can thereby verify that the IOPCBrowse command was sent to one of Joel's OPC
servers in frame 5285 and 5286. However, tshark/Wireshark is not able to parse the
list of OPC items (tags) that are returned from this function call. Also, in order to find
all IOPCBrowse commands in a more effective way we'd like to search for the binary
representation of this command with tools like ngrep or CapLoader. It would even be
possible to generate an IDS signature for IOPCBrowse if we'd know what to look for.

The first part of an MSRPC UUID is typically sent in little endian, which means that the
IOPCBrowse command is actually sent over the wire as:

04 70 22 39 8f a1 57 4b 8b 0a 52 35 67 0f 44 68

Let's search for that value in Joel's PCAP file:

11/17/2014 Observing the Havex RAT - NETRESEC Blog

http://www.netresec.com/?page=Blog&month=2014-11&post=Observing-the-Havex-RAT 4/5

Image: Searching for IOPCBrowse byte sequence with CapLoader

Image: CapLoader with 169 extracted flows matching IOPCBrowse UUID

Apparently 169 flows contain one or several packets that match the IOPCBrowse UUID.
Let's do a “Flow Transcript” and see if any OPC tags have been sent back to the Havex
OPC scanner.

11/17/2014 Observing the Havex RAT - NETRESEC Blog

http://www.netresec.com/?page=Blog&month=2014-11&post=Observing-the-Havex-RAT 5/5

Short URL: http://netresec.com/?b=14BE342

Image: CapLoader Transcript of OPC-DA session

Oh yes, the Havex OPC scanner sure received OPC tags from what appears to be a
Waterfall unidirectional OPC gateway.

Another way to find scanned OPC tags is to search for a unique tag name, like “Bucket
Brigade” in this example.

 Share |

Posted by Erik Hjelmvik on Wednesday, 12 November 2014 21:09:00 (UTC/GMT)

© 2010-2013 NETRESEC AB | Contact Us | Privacy | RSS

http://www.netresec.com/?page=AboutNetresec
http://www.netresec.com/?page=Privacy
http://www.netresec.com/rss.ashx

