## Malicious Control System Cyber Security Attack Case Study– Maroochy Water Services, Australia

Marshall D. Abrams, The MITRE Corporation Joe Weiss, Applied Control Solutions, LLC

**August 2008** 



#### NIST Industrial Control System (ICS) Cyber Security Project

- Objective: to improve the cyber security of federally owned/operated ICS
- ICS pervasive throughout all critical infrastructures
- Improve the security of public and private sector ICS
  - Work with voluntary industry standards groups (e.g., The Instrumentation, Systems, and Automation Society – ISA)
    - Assist in ICS cyber security standards and guideline development
    - Foster ICS cyber security standards convergence
  - Raise the level of ICS security through R&D and testing
- Purpose of case studies is to focus in on factors otherwise overlooked, not to ascribe any blame

#### **NIST Cyber Security Strategic Vision**

- Promote the development of key security standards and guidelines to support the implementation of and compliance with the Federal Information Security Management Act (FISMA)
- Build a solid foundation of information security across one of the largest information technology infrastructures in the world based on comprehensive security standards and technical guidance.
- Institutionalize a comprehensive Risk Management Framework that promotes flexible, cost-effective information security programs for federal agencies.
- Establish a fundamental level of "security due diligence" for federal agencies and their contractors based on minimum security requirements and security controls.
- NIST standards and guidelines are voluntarily used by the private sector

#### **The Current Landscape**

- Public and private sector enterprises today are *highly dependent* on information systems to carry out their missions and business functions.
- Developments in ICS have seen these traditionally closed systems become open and internet-connected, thus putting the national services critical *infrastructure at risk*.
- To achieve mission and business success, enterprise information systems must be *dependable* in the face of serious cyber threats.
- To achieve information system dependability, the systems must be appropriately *protected*.

#### **The Threat Situation**

- ICS are becoming more open making them vulnerable to intentional and unintentional cyber threats
- Effects of errors and omissions increasingly catastrophic
- Attacks are organized, disciplined, aggressive, and well resourced; many are extremely sophisticated
- Adversaries are nation states, terrorist groups, criminals, hackers, and individuals or groups with intentions of compromising information systems
- Significant exfiltration of critical and sensitive information and implantation of malicious software occurring on a regular basis
- Largely untutored work force with little interest in IT security
- ICS community diverse using different protocols (many archaic)

#### **NIST ICS Project Deliverables**

- Support public & private sectors, and standards organizations that want to use NIST Standards & Guidelines for ICS
- Evolve SP 800-53 Recommended Security Controls for Federal Information Systems to better address ICS
  - Revision 2 published December 2007
- Develop SP 800-82 Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial Control System Security
  - Second draft September 2007
  - Final in 2008

#### **Case Study Overview**

Examine actual control system cyber event

- Resulted in significant environmental and economic damage
- Malicious attack by knowledgeable insider, who had been a trusted contractor employee
- Timelines, control system response, and control system policies
- Identify operating policies and procedures that were missing or had readily identifiable cyber security vulnerabilities
- Identify NIST SP 800-53 management, operational, and technical safeguards or countermeasures that, if implemented, could have prevented or ameliorated the event

#### **Attack Synopsis**

- Vitek Boden worked for Hunter Watertech, an Australian firm that installed SCADA radio-controlled sewage equipment for the Maroochy Shire Council in Queensland, Australia (a rural area of great natural beauty and a tourist destination)
  - Applied for a job with the Maroochy Shire Council
  - Walked away from a "strained relationship" with Hunter Watertech
  - The Council decided not to hire him
  - Boden decided to get even with both the Council and his former employer
- On at least 46 occasions issued radio commands to the sewage equipment
  - Caused 800,000 liters of raw sewage to spill out into local parks, rivers and even the grounds of a Hyatt Regency hotel
  - Marine life died, the creek water turned black and the stench was unbearable for residents

#### **Time Line**

- 1997-December 1999 Boden employed by Hunter Watertech
- December 3, 1999 Boden resigns from Hunter Watertech
- Early December 1999 Boden seeks City Council employment
- Early January 2000 Boden turned down
- February 9-April 23, 2000 SCADA system experiences series of faults
- March 16, 2000 Hunter Watertech investigator tried to troubleshoot system
- April 19, 2000 Log indicates system program had been run at least 31 times
- April 23, 2000 Boden disabled alarms at four pumping stations using the identification of pumping station 4.
- April 23, 2000 Boden pulled over by police with computer equipment in car
- October 31, 2001 Boden convicted in trial sentenced to 2 years
- March 21, 2002 Appeal rejected

#### MITRE

Q

#### **Evidence Found in Boden's Vehicle**

#### Laptop

- Reloaded February 28, 2000
- Software used in the sewerage system (re)installed February 29
  - Run at least 31 times prior to April 19
  - Last run on April 23
- Motorola M120 two-way radio same type used in the Council's system
  - Tuned into the frequencies of the repeater stations
  - Serial numbers matched delivery docket provided by the supplier of the radios to Hunter Watertech
- PDS Compact 500 computer control device
  - Address set to spoof pumping station
  - Serial number identified it as a device which should have been in the possession of Hunter Watertech

## **Observations (1/2)**

Boden was an insider who was never an employee of the organization he attacked

- Employee of contractor that supplied IT/control system technology
- With his knowledge he was the "ultimate insider"
- Contractor's responsibilities unstated or inadequate
  - Management, technical and operational cyber security controls
  - Personnel security controls
    - Background investigations
    - Protection from disgruntled employees

As a skillful adversary, Boden was able to disguise his actions

- A number of anomalous events occurred before recognition that the incidents were intentional
- Extensive digital forensics were required to determine that a deliberate attack was underway
- No existing cyber security policies or procedures
- No cyber security defenses

#### **Observations (2/2)**

- Difficult to differentiate attacks from malfunctions
- When/why is it important to determine whether intentional attack, or unintentional flaw or error?
- Difficult to protect against insider attacks
- Radio communications commonly used in SCADA systems are often insecure or improperly configured
- SCADA devices and software should be secured to the extent possible using physical and logical controls
- Security controls often not implemented or used properly
- Generally SCADA systems lack adequate logging mechanisms for forensic purposes
- Also recommended
  - Anti-virus
    Firewall protection
    Appropriate use of encryption
  - Upgrade-able SCADA systems (from a security perspective)
  - Proper staff training
    Security auditing and control.

# SP 800-53 Security Control Classes, Families, and Identifiers

| IDENTIFIER | FAMILY                                                 | CLASS       |
|------------|--------------------------------------------------------|-------------|
| AC         | Access Control                                         | Technical   |
| AT         | Awareness and Training                                 | Operational |
| AU         | Audit and Accountability                               | Technical   |
| CA         | Certification, Accreditation, and Security Assessments | Management  |
| СМ         | <b>Configuration Management</b>                        | Operational |
| СР         | Contingency Planning                                   | Operational |
| IA         | Identification and Authentication                      | Technical   |
| IR         | Incident Response                                      | Operational |
| MA         | Maintenance                                            | Operational |
| MP         | Media Protection                                       | Operational |
| PE         | Physical and Environmental<br>Protection               | Operational |
| PL         | Planning                                               | Management  |
| PS         | Personnel Security                                     | Operational |
| RA         | Risk Assessment                                        | Management  |
| SA         | System and Services Acquisition                        | Management  |
| SC         | System and Communications<br>Protection                | Technical   |
| SI         | System and Information Integrity                       | Operational |

#### **SP 800-53 Pervasive Cyber Security Prophylactic Controls**

| PROBLEM                     | CONTROL FAMILY                                                            |
|-----------------------------|---------------------------------------------------------------------------|
| Policy and Procedures       | The first control in every control family addresses policy and procedure. |
| Personnel Security          | Personnel Security (PS)                                                   |
| Hardware & Software         | System and Services Acquisition (SA)                                      |
| Awareness and<br>Training   | Awareness and Training (AT)                                               |
| Audit                       | Audit and Accountability (AU)                                             |
| <b>Contingency Planning</b> | Contingency Planning (CP)                                                 |
| Incident Response           | Incident Response (IR)                                                    |
| Cryptographic<br>Protection | System and Communications Protection (SC)                                 |

#### **Security Policy and Procedures**

- SP 800-53 policy and procedure controls
  - The first control in every control family is policy and procedure
  - The organization develops, disseminates, and periodically reviews/updates:
    - a formal, documented, <*family*> policy that addresses purpose, scope, roles, responsibilities, management commitment, coordination among organizational entities, and compliance
    - formal, documented procedures to facilitate the implementation of the *<family>* policy and associated *<family>* controls.

## **Personnel Security (PS)**

#### No personnel security requirements on contractor

| <u>PS-1</u> | Personnel Security Policy and<br>Procedures | PS-5        | Personnel Transfer             |
|-------------|---------------------------------------------|-------------|--------------------------------|
| PS-2        | Position Categorization                     | <u>PS-6</u> | Access Agreements              |
| <u>PS-3</u> | Personnel Screening                         | <u>PS-7</u> | Third-Party Personnel Security |
| <u>PS-4</u> | Personnel Termination                       | PS-8        | Personnel Sanctions            |

- PS-7 identifies need for contractual obligations
- Other controls candidates for inclusion
  - Key personnel clause
  - Sometime contractors treated same as employees
  - Example: PS-4 exit interview might have identified potential malicious action

Controls that would have helped are underlined

## System and Services Acquisition (SA)

#### Contractor supplied hardware & software

No indication that any System and Services Acquisition family (SA) controls were in contract

| <u>SA-1</u> | System and Services<br>Acquisition Policy and<br>Procedures | SA-7         | User Installed Software                 |
|-------------|-------------------------------------------------------------|--------------|-----------------------------------------|
| SA-2        | Allocation of Resources                                     | SA-8         | Security Engineering Principles         |
| SA-3        | Life Cycle Support                                          | SA-9         | External Information System<br>Services |
| <u>SA-4</u> | <u>Acquisitions</u>                                         | SA-10        | Developer Configuration<br>Management   |
| SA-5        | Information System<br>Documentation                         | <u>SA-11</u> | Developer Security Testing              |
| SA-6        | Software Usage Restrictions                                 |              |                                         |

Example SA-11 required tests for resistance to penetration

## **Awareness and Training (AT)**

#### No security training had been provided to staff

| <u>AT-1</u> | Security Awareness and<br>Training Policy and<br>Procedures | <u>AT-4</u> | Security Training Records                         |
|-------------|-------------------------------------------------------------|-------------|---------------------------------------------------|
| <u>AT-2</u> | Security Awareness                                          | AT-5        | Contacts with Security Groups<br>and Associations |
| <u>AT-3</u> | Security Training                                           |             |                                                   |

#### People are one of the weakest links in cyber security

- Robust awareness and training program is paramount to ensuring that people understand cyber security responsibilities, organizational policies, and how to properly use and protect the resources entrusted to them
- All individuals should receive specialized training focused on their responsibilities and the application rules

## Audit (AU)

- System lacked sufficient audit capability
- Audit supports other control families such as incident response, access control, and flaw remediation.

| <u>AU-1</u> | Audit and Accountability<br>Policy and Procedures | <u>AU-7</u>  | Audit Reduction and Report<br>Generation |
|-------------|---------------------------------------------------|--------------|------------------------------------------|
| <u>AU-2</u> | Auditable Events                                  | AU-8         | Time Stamps                              |
| <u>AU-3</u> | Content of Audit Records                          | <u>AU-9</u>  | Protection of Audit<br>Information       |
| <u>AU-4</u> | Audit Storage Capacity                            | AU-10        | Non-repudiation                          |
| AU-5        | Response to Audit<br>Processing Failures          | <u>AU-11</u> | Audit Record Retention                   |
| <u>AU-6</u> | Audit Monitoring, Analysis,<br>and Reporting      |              |                                          |

Recording and analyzing remote access might have led to quicker determination of malicious activity

## **Contingency Planning (CP)**

All the analysis indicates that there were no plans to deal with an emergency or system disruption

| <u>CP-1</u> | Contingency Planning Policy<br>and Procedures | CP-6        | Alternate Storage Site                            |
|-------------|-----------------------------------------------|-------------|---------------------------------------------------|
| <u>CP-2</u> | Contingency Plan                              | CP-7        | Alternate Processing Site                         |
| <u>CP-3</u> | Contingency Training                          | <u>CP-8</u> | <u>Telecommunications</u><br><u>Services</u>      |
| <u>CP-4</u> | Contingency Plan Testing<br>and Exercises     | CP-9        | Information System Backup                         |
| <u>CP-5</u> | Contingency Plan Update                       | CP-10       | Information System Recovery<br>and Reconstitution |

 Existing plans for dealing with natural disasters and equipment breakdowns should be augmented for deliberate attacks, physical and cyber

#### MITRE

#### **Incident Response (IR)**

- Response to the sewerage discharge was ad hoc
  - Considerable time elapsed during troubleshooting before malicious intent was considered

| <u>IR-1</u> | Incident Response Policy<br>and Procedures | <u>IR-5</u> | Incident Monitoring             |
|-------------|--------------------------------------------|-------------|---------------------------------|
| <u>IR-2</u> | Incident Response Training                 | <u>IR-6</u> | Incident Reporting              |
| <u>IR-3</u> | Incident Response Testing<br>and Exercises | <u>IR-7</u> | Incident Response<br>Assistance |
| <u>IR-4</u> | Incident Handling                          |             |                                 |

- All incident response controls contribute to
  - -Rapidly detecting incidents
  - Minimizing loss and destruction
  - Mitigating the weaknesses that were exploited
  - Restoring services
  - Apprehending malefactors

## System and Communications Protection (SC)

- Cryptographic protection recommended
  - Supports identification and authentication (I&A)

| <u>SC-1</u> | System and Communications<br>Protection Policy<br>and Procedures | <u>SC-13</u> | Use of Cryptography                       |
|-------------|------------------------------------------------------------------|--------------|-------------------------------------------|
| SC-9        | Transmission Confidentiality                                     | <u>SC-17</u> | Public Key Infrastructure<br>Certificates |

- Recent U.S. government policy
- Protection of Sensitive Agency Information, OMB M-06-16, June 23, 2006, specifies
  - Full disk encryption
  - Two factor authentication

Other SC controls not relevant to cryptography

#### **SP 800-53 Controls for Malicious Activities**

| MALICIOUS<br>ACTIVITY               | CONTROL FAMILY                                                |
|-------------------------------------|---------------------------------------------------------------|
| Issuing radio<br>commands           | Access Control (AC)<br>Identification and Authentication (IA) |
| Falsifying network address          | Access Control (AC)                                           |
| Sending false data and instructions | System and Information Integrity (SI)                         |
| Disabling alarms                    |                                                               |

## Access Control (AC)

- A combination of access controls would have alleviated or prevented the attack
- Tightly coupled with Identification and Authentication

| <u>AC-1</u> | Access Control Policy and<br>Procedures | AC-11        | Session Lock                                                     |
|-------------|-----------------------------------------|--------------|------------------------------------------------------------------|
| <u>AC-2</u> | Account Management                      | AC-12        | Session Termination                                              |
| <u>AC-3</u> | Access Enforcement                      | <u>AC-13</u> | Supervision and Review—<br>Access Control                        |
| <u>AC-4</u> | Information Flow<br>Enforcement         | AC-14        | Permitted Actions without<br>Identification or<br>Authentication |
| AC-5        | Separation of Duties                    | AC-15        | Automated Marking                                                |
| <u>AC-6</u> | Least Privilege                         | AC-16        | Automated Labeling                                               |
| <u>AC-7</u> | Unsuccessful Login Attempts             | <u>AC-17</u> | Remote Access                                                    |
| AC-8        | System Use Notification                 | <u>AC-18</u> | Wireless Access Restrictions                                     |
| AC-9        | Previous Logon Notification             | <u>AC-19</u> | Access Control for Portable<br>and Devices                       |
| AC-10       | Concurrent Session Control              | AC-20        | Use of External Information<br>Systems                           |

MITRE

#### **Access Control Examples**

- Radio access (AC-18) limited to
  - Specific hardware devices
  - Authorized persons and processes
- Authorization & credentials require management (AC-2)
- Authorized persons granted only those privileges necessary to do their job (AC-6)
- Audit log review uncover unexpected access (AC-13)

#### **Identification & Authentication (IA)**

Physical possession of radio and computer should not have been sufficient

| <u>IA-1</u> | Identification and<br>Authentication Policy and<br>Procedures | IA-5 | Authenticator Management               |
|-------------|---------------------------------------------------------------|------|----------------------------------------|
| IA-2        | User Identification and<br>Authentication                     | IA-6 | Authenticator Feedback                 |
| <u>IA-3</u> | Device Identification and Authentication                      | IA-7 | Cryptographic Module<br>Authentication |
| <u>IA-4</u> | Identifier Management                                         |      |                                        |

Techniques for hardware (radio) I&A

- Shared known information (e.g., Media Access Control (MAC))
- Organizational authentication solution (e.g., IEEE 802.1x and Extensible Authentication Protocol (EAP))

## System & Information Integrity (SI)

#### Unauthorized activity could have been detected

| <u>SI-1</u> | System and Information<br>Integrity Policy and<br>Procedures | <u>SI-7</u>  | Software and Information<br>Integrity                                |
|-------------|--------------------------------------------------------------|--------------|----------------------------------------------------------------------|
| SI-2        | Flaw Remediation                                             | SI-8         | Spam Protection                                                      |
| SI-3        | Malicious Code Protection                                    | SI-9         | Information Input<br>Restrictions                                    |
| <u>SI-4</u> | Information System<br>Monitoring Tools and<br>Techniques     | <u>SI-10</u> | Information Accuracy,<br>Completeness, Validity, and<br>Authenticity |
| SI-5        | Security Alerts and<br>Advisories                            | SI-11        | Error Handling                                                       |
| SI-6        | Security Functionality<br>Verification                       | SI-12        | Information Output Handling and Retention                            |

- Commands that led to dumping raw sewerage
  - Detected
  - -Validated

#### Learning From the 2000 Maroochy Shire Cyber Attack

- Public record of an intentional, targeted attack by a knowledgeable person on an industrial control system teaches us to consider:
  - Critical physical, administrative, and supply chain vulnerabilities
  - Vulnerabilities coming from suppliers or others outside the organization
  - Contractor and sub-contractor personnel as a potential attack source
- Need to be concerned with both inside & outside attack
- Difficulty in identifying a control system cyber incident as a malicious attack and retaking control of a "hijacked" system
- A determined, knowledgeable adversary could potentially defeat most controls
- Structured defense-in-depth security is best

#### **Additional Information**

#### Authors

- Marshall Abrams <abrams@mitre.org>
- Joe Weiss <joe.weiss@realtimeacs.com>
- Incident
  - See references in paper
- Case Study
  - <u>http://csrc.nist.gov/sec-cert/ics/papers.html</u>

#### NIST Industrial Control System Security Project

- http://csrc.nist.gov/sec-cert/ics/index.html
- NIST Project Managers
  - Stu Katzke <stuart.katzke@nist.gov>
  - Keith Stouffer <keith.stouffer@nist.gov>