

This product is provided subject only to the Notification Section as indicated here: http://www.us-cert.gov/privacy/

WMI for Detection and Response

August 2016

http://www.us-cert.gov/privacy/

 iii

SUMMARY
This document provides an introduction to and guidance on methods

available for mitigating the adversarial use of Windows Management
Instrumentation (WMI).

 iv

 v

CONTENTS

SUMMARY ... iii

ACRONYMS .. vii

1. INTRODUCTION .. 1
1.1 High-Level WMI Architecture ... 1
1.2 Remote WMI.. 2

2. Querying WMI ... 2

3. Attacker WMI Detection .. 3
3.1 Existing Detection Utilities .. 3

3.1.1 Sysinternals Autoruns ... 3
3.1.2 Kansa ... 4

4. Defensive WMI Eventing ... 5
4.1 The Two Classes of WMI Events .. 5
4.2 Three Important Parts of a WMI Event .. 5
4.3 Event Filters ... 6
4.4 Event Consumers ... 6
4.5 Filter to Consumer Binding .. 7

5. Event Types .. 8
5.1 Intrinsic Events .. 8
5.2 Extrinsic Events ... 9

6. Using WMI CLI commands for Detection and Removal of malicious wmi 10
6.1 Manual Detection: WMI Command Line Tool .. 10
6.2 Manual Removal: WMI Command Line Tool ... 10
6.3 WMI Intrusion Detection Using PowerShell Code Ex .. 10
6.4 Event Logs ... 11

7. Additional WMI Mitigation ... 11
7.1 WMI Backup & Restore .. 11
7.2 WMI Access Control ... 12

Appendix A ... 14

FIGURES
Figure 1. WMI Architecture Diagram ... 1

Figure 2. Sysinternals Autoruns screenshot with startup items. ... 4

Figure 3. Event Filters shown with wmimgmt.msc. ... 6

Figure 4. Event Consumer Listing. ... 7

 vi

Figure 5. Showing how Filters and Consumers interact with one another by using a
FilterToConsumerBinding to tie them together. ... 8

Figure 6. How to start wmimgmt tool. .. 12

Figure 7. wmimgmt.msc main menu .. 12

Figure 8. wmimgmt backup/restore window. ... 12

Figure 9. Accessing Root directory to apply access control (security) settings. ... 13

Figure 10. Screenshot of Security for Root. .. 13

Figure A-1. After selecting namespace, class, and method script will be generated for user which
can be further modified. Users then need only supply desired value(s) for script if
required. .. 14

Figure A-2. Powershell prompt and table of popular WMI cmdlets. .. 15

Figure A-3. Administrators and malicious attackers can use the Wmic.exe terminal to execute
WMI methods. .. 16

Figure A-4. Wbemtest.exe dashboard once connected. .. 17

Figure A-5. Contents of root\CIMV2 directory and WMI Explorer generated WQL language to
select all contents from Win32_Processor object ... 17

Figure A-6. Exploring down 5 levels into the root\CIMV2 directory and displaying the contents
of selected object .. 18

 vii

ACRONYMS

CLI command line interface

IDS intrusion detection system

VM virtual machine

WMI Windows Management Instrumentation

WQL WMI Query Language

 viii

 1

WMI for Detection and Response
1. INTRODUCTION

Windows Management Instrumentation (WMI) is composed of a powerful set of tools used
to manage Windows systems both locally and remotely. While it has been well known and used
heavily by system administrators since its inception, WMI has been gaining popularity amongst
attackers for its ability to perform system reconnaissance, antivirus and virtual machine (VM)
detection, code execution, lateral movement, persistence, and data theft.

This whitepaper will present an introduction to WMI, actual and proof-of-concept attacks
using WMI, how WMI can be used as a rudimentary intrusion detection system (IDS), how to
defend against adversarial use of WMI, and present how to perform forensics on the WMI
repository file format.

1.1 High-Level WMI Architecture
WMI represents most data related to operating system information and actions in the form of

objects. An object is a member of a class, a class is a member of a namespace, and all
namespaces derive from the “Root” namespace. This paper will later show examples of how to
list, find, and use namespaces, classes, and objects through multiple tools and methods such as
PowerShell, WQL (WMI Query Language), WMI Code Creator and others. See Figure 1.

WMI classes can be found on the MSDN site at:

https://msdn.microsoft.com/en-us/library/aa394554(v=vs.85).aspx

Figure 1: WMI Architecture Diagram.

Root
Namespace

Namespace
A

Class A

Object C Object H

Class B

Object D Object E

Namespace
B

Class C

Object B Object G

Class D

Object A Object F

https://msdn.microsoft.com/en-us/library/aa394554(v=vs.85).aspx

 2

1.2 Remote WMI
The real threat and power of WMI is realized when used over the network.

Currently, two protocols exist that enable remote object queries, event registration, WMI
class method execution, and class creation:

• DCOM TCP Port 135

• WinRM TCP Ports 5985 (HTTP) and 5986 (HTTPS).

These protocols are viewed as advantageous to an attacker because most organizations and
vendors generally don’t inspect the content of this traffic for signs of malicious activity.

All that an attacker needs to leverage remote WMI is valid, privileged user credentials. In the
case of the Linux wmis-pth utility, all that is needed is the hash of the victim user.

2. QUERYING WMI
WMI provides a straightforward syntax for querying WMI object instances, classes, and

namespacesWindows Query Language (WQL). From a defensive perspective, it is vital to
understand and be able to adequately use queries. Queries are used regularly for malicious
purposes and should be used for defensive purposes. These queries can do everything from
attacker reconnaissance to intrusion detection. The three categories of WQL queries are as
follows:

1. Instance queries

a. Are used to query WMI class instances.

b. Primarily are used by attackers for conducting reconnaissance and gathering information
about a targeted system.

2. Event queries

a. Are used as a WMI event registration mechanism, e.g., WMI object creation, deletion, or
modification.

 3

b. Will be one area of focus later in the paper when discussing WMI defense and mitigation.

3. Meta queries

a. Are used to query WMI class schemas.

Format:

The following query lists all WMI classes that start with the string “Win32.”

Example:

NOTE: When performing any WMI query, the default namespace ROOT\CIMV2 is implied unless

explicitly provided.

3. ATTACKER WMI DETECTION

3.1 Existing Detection Utilities
In addition to using WMI events to alert users to possible attacks, detection utilities are also

available.

3.1.1 Sysinternals Autoruns
Autoruns is a free utility that unveils every startup item on a Windows-based PC. All images

are stored in the startup folders, the Registry, and other areas.

Autoruns shows the name and location of each image. For files, it displays the directory path;
for Registry entries, it provides the exact key. Autoruns also supplies the name of the publisher
and a brief description based on the item’s version data. Double-clicking on an entry guides the
user to its directory or Registry key; right-clicking opens a popup menu with more options,

 4

including a Properties command that displays the standard File Properties window with full
version information.

Users can check on the digital signature of an entry through the Verify command, which
queries web sites with certificate revocation lists (CRLs) to determine if an image is digitally
signed and whether the signature is valid.

Another option to “Hide Signed Microsoft Entries” excludes entries already signed by
Microsoft, allowing the user to focus on third-party images.

Figure 2: Sysinternals Autoruns screenshot with startup items.

3.1.2 Kansa
Kansa is modular. It features a core script, dozens of collector modules and analysis scripts

to help make sense of the data collected. Kansa takes advantage of Windows Remote
Management and PowerShell remoting by using PowerShell’s default nondelegated Kerberos
network logons, not CredSSP and, therefore, does not expose credentials to harvesting.

Kansa is a great tool with many uses but particularly useful are its Get-Autorunsc,
Get-WMIEvtConsumer, Get-WMIEvtFilter and Get-WMIFltConBind PowerShell scripts.

1. Get-Autorunsc

- A great utility for gathering data from many known ASEP (Auto Start Extension Point)
locations, including the path to the executable or script, command line arguments, and
cryptographic hashes such as MD5.

Startup
items

Startup Item Filters

 5

2. Get-WMIEvt(Consumer/Filter)/Get-WMIFltConBind

- Collects data about WMI Event Consumers/Filters/Consumer – Filter Binding.
- Kansa provides modules that can query and return information that an admin would need

to detect WMI persistence.
- A walk-through on setting up Kansa and an in depth explanation of its many utilities and

capabilities can be found at:
http://www.powershellmagazine.com/2014/07/18/kansa-a-powershell-based-incident-response-
framework/

The downside to these tools is that they only detect WMI persistence artifacts at a certain
snapshot in time. This means that tools like Sys Internals Autoruns and Kansa won’t detect
persistence from clever attackers who clean up their code once they’ve performed their actions.
The solution to this problem is to use WMI eventing.

4. DEFENSIVE WMI EVENTING
The eventing subsystem present in WMI could be thought of as the free host-based IDS from

Microsoft.

Because almost all operating system actions fire a WMI event, such as Instance, Class,
Namespace, and Registry Creation and Modification events, WMI is well positioned to catch and
alert admins of attacker actions as they occur.

Administrators can choose how to receive alerts on events they have created. One popular
method is to have a user send an email or an alert pop up to notify the admin when an event fires.

One of the most powerful features of WMI from an attacker’s or defender’s perspective is the
WMI event, which can be used to respond to nearly any operating system event.

• For example, a WMI event may be used to trigger an event upon process creation. This could
then be used as a means to perform command-line auditing on any Windows OS.

4.1 The Two Classes of WMI Events
1. Events that run locally in the context of a single process.

- Local events last for the lifetime of the host process.

2. Permanent WMI event subscriptions.

- Permanent WMI events are stored in the WMI repository, run as SYSTEM, and persist
across reboots.

4.2 Three Important Parts of a WMI Event
In order to install a permanent WMI event subscription, three things are required:

1. An event filterThe event of interest,

2. An event consumerAn action to perform upon triggering an event,

http://www.powershellmagazine.com/2014/07/18/kansa-a-powershell-based-incident-response-framework/
http://www.powershellmagazine.com/2014/07/18/kansa-a-powershell-based-incident-response-framework/

 6

3. A filter to consumer bindingThe registration mechanism that binds a filter to a consumer.

4.3 Event Filters
Once a filter has been configured, it can be used to receive alerts when new events are

created.

Event filters are stored in an instance of ROOT\Subscription: __EventFilter object

As an example, event filters might be used to describe some of the following events:

• Creation of a process with a certain name;

• Loading of a DLL into a process,

• Creation of an event log with a specific ID;

• Insertion of removable media;

• User logoff; and

• Creation, modification, or deletion of any file or directory.

Figure 3: Event Filters shown with wmimgmt.msc.

4.4 Event Consumers
An event consumer is a class that is derived from the __EventConsumer system class that

represents the action to take on firing an event.

The following useful standard event consumer classes:

• LogFileEventConsumerWrites event data to a specified log file.

• ActiveScriptEventConsumerExecutes an embedded VBScript of JScript script payload.

• NTEventLogEventConsumerCreates an event log entry containing the event data.

• SMTPEventConsumerSends an email containing the event data.

• CommandLineEventConsumerExecutes a command-line program.

 7

Figure 4: Event consumer Listing.

Attackers make heavy use of the ActiveScriptEventConsumer and
CommandLineEventConsumer classes when responding to their events.

Both event consumers offer a tremendous amount of flexibility for attackers to execute any
payload they wantall without needing to drop a single malicious executable or script to disk.

4.5 Filter to Consumer Binding
Once an event filter and an event consumer have been created, the only thing left to do is to

bind them together so the consumer knows off of which filter to base itself.

This class instance associates an __EventFilter instance with an __EventConsumer instance.
It completes the cycle by relating the class instances with each other. It answers the question,
“With what Windows event (__EventFilter) will I execute my script program
(__EventConsumer)?”

__FilterToConsumerBinding is used in registering permanent event consumers to relate an
__EventConsumer instance to an __EventFilter instance.

 8

Figure 5: Showing how Filters and Consumers interact with one another by using a
FilterToConsumerBinding to tie them together.

For more WMI Event examples, prewritten scripts or a deeper delve into WMI; MSDN and
Microsoft TechNet are two great resources. Here are a few links with which to start:

• Enhanced WMI Monitoring Scriptshttps://technet.microsoft.com/en-
us/library/ee156569.aspx

• Monitoring Resources by Using WMI Event
Notificationshttps://technet.microsoft.com/en-us/library/ee198937.aspx

• How WMI Event Notification Workshttps://technet.microsoft.com/en-
us/library/ee156572.aspx

• WMI Script Repository—
https://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=Tag&f%5B
0%5D.Value=WMI

5. EVENT TYPES

5.1 Intrinsic Events
Intrinsic events are events that use polling and fire upon the creation, modification, and

deletion of any WMI class, object, or namespace. They can also be used to alert to the firing of
timers or the execution of WMI methods. The following intrinsic events take the form of system
classes (those that start with two underscores) and are present in every WMI namespace:

• __NamespaceOperationEvent,

• __NamespaceModificationEvent,

• __NamespaceDeletionEvent,

• __NamespaceCreationEvent,

• __ClassOperationEvent

• __ClassDeletionEvent,

• __ClassModificationEvent,

• __ClassCreationEvent,

Action of
Interest

Action to
perform upon
filter firing

Ties the Filter and Consumer together

https://technet.microsoft.com/en-us/library/ee156569.aspx
https://technet.microsoft.com/en-us/library/ee156569.aspx
https://technet.microsoft.com/en-us/library/ee198937.aspx
https://technet.microsoft.com/en-us/library/ee156572.aspx
https://technet.microsoft.com/en-us/library/ee156572.aspx
https://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=Tag&f%5B0%5D.Value=WMI
https://gallery.technet.microsoft.com/scriptcenter/site/search?f%5B0%5D.Type=Tag&f%5B0%5D.Value=WMI

 9

• __InstanceOperationEvent,

• __InstanceCreationEvent,

• __MethodInvocationEvent,

• __InstanceModificationEvent,

• __InstanceDeletionEvent, and

• __TimerEvent.

These events are extremely powerful, because they can be used as triggers for nearly any
conceivable event in the operating system.

Because of the rate at which intrinsic events can fire, a polling interval must be specified in
queries specified with the WQL WITHIN clause.

Because of the polling interval, it is possible on occasion to miss events. For example, if an
event query is formed targeting the creation of a WMI class instance and if that instance is
created and destroyed within the polling interval, that event would be missed.

This query is translated to firing on the creation of an instance of a Win32_LogonSession
class with a logon type of 2 (Interactive).

Example:

5.2 Extrinsic Events
Extrinsic events solve the potential polling issues related to intrinsic events because they fire

immediately on an event occurring.

• The downside is not many extrinsic events are present in WMI.

• The events that do exist are extremely powerful but the following extrinsic events may also
be of value to an attacker or defender:

- ROOT\CIMV2:Win32_ComputerShutdownEvent
- ROOT\CIMV2:Win32_IP4RouteTableEvent
- ROOT\CIMV2:Win32_ProcessStartTrace
- ROOT\CIMV2:Win32_ModuleLoadTrace
- ROOT\CIMV2:Win32_ThreadStartTrace
- ROOT\CIMV2:Win32_VolumeChangeEvent
- ROOT\CIMV2:Msft_WmiProvider*
- ROOT\DEFAULT:RegistryKeyChangeEvent
- ROOT\DEFAULT:RegistryValueChangeEvent.

 10

This query would capture all executable modules loaded into every process:

Example:

6. USING WMI CLI COMMANDS FOR DETECTION AND REMOVAL
OF MALICIOUS WMI

6.1 Manual Detection: WMI Command Line Tool
To manually detect instances of the threat in a system, the following commands can be used

with the Command line tool:

• wmic/namespace:\\root\subscription PATH __EventConsumer get/format:list

• wmic/namespace:\\root\subscription PATH __EventFilter get/format:list

• wmic/namespace:\\root\subscription PATH __FilterToConsumerBinding get/ format:list

• wmic/namespace:\\root\subscription PATH __TimerInstruction get/format:list.

6.2 Manual Removal: WMI Command Line Tool
To manually remove instances of the threat in a system, the following commands can be used

with the Command line tool:

• wmic/namespace:\\root\subscription PATH__EventConsumer delete

• wmic/namespace:\\root\subscription PATH__EventFilter delete

• wmic/namespace:\\root\subscription PATH__FilterToConsumerBinding delete

• wmic/namespace:\\root\subscription PATH__TimerInstruction delete

6.3 WMI Intrusion Detection Using PowerShell Code Ex
The six examples given below show the PowerShell syntax as used for WMI detection.

Format:

 11

Below are three examples of how one could use PowerShell to alert on either
EventConsumers, RegistryKey’s or StartupCommands.

Example:

6.4 Event Logs
WMI, DCom and WinRM events to the following event logs:

• Microsoft-Windows-WinRM/Operational

- Shows failed WinRM connection attempts including the originating IP address
• Microsoft-Windows-WMIActivity/Operational

- Contains failed WMI queries and method invocations that may contain evidence of
attacker activity

• Microsoft-Windows-DistributedCOM.

- Shows failed DCOM connection attempts including the originating IP address.

Many Network level IDS and IPS’s can incorporate logs from WMI events stored in the
above locations and be configured to perform an action such as marking action for review on
dashboard, emailing administrator, preventing an action from performing (ex: file being
executed), and more depending on the system.

7. ADDITIONAL WMI MITIGATION

7.1 WMI Backup & Restore
Having a WMI baseline for the computer systems within an organization is a great first step

in understanding and being able to identify malicious WMI activity and mitigate it.

Wmimgmt.msc as well as the tools listed previously in this paper can all be used to explore
the namespaces and associated classes and objects with ease. However, with dozens of
namespaces and thousands of classes, it may not be feasible to manually gain a close familiarity
with WMI and a baseline thereof.

 12

Figure 6: How to start wmimgmt tool.

NOTE: Click more actions or right click on WMI Control (Local) -> actions -> properties to access
the WMI Control (Local) Properties window

Figure 7: wmimgmt.msc main menu

An alternative to familiarization and baselining WMI is to back up the WMI repository once
an organization has configured the system. Having a backup of the WMI repository allows users
the option to restore from the backup file when users uncover evidence of malicious WMI
activity or suspect potential malicious WMI activity from attackers.

Figure 8: wmimgmt backup/restore window.

7.2 WMI Access Control
The security tab is located in the same properties window as the Backup/Restore tab. The

security tab allows the user to configure user permissions for WMI Repository interaction.

Right Click Click to access WMI Control
properties

Backup current trusted
WMI database or

restore from trusted
repository

 13

Figure 9: Accessing Root directory to apply access control (security) settings.

Organizations can set the controls to match its preferences. For example, permissions can be
set for the entire root directory or for specific namespaces like CIMV2.

Another option is to have a separate account specifically for WMI management with a unique
set of credentials. While some would argue that simple techniques, such as hash dumping, render
this defensive method irrelevant from a defense-in-depth perspective, granular access control is
applicable to WMI management.

Figure 10: Screenshot of Security for Root.

 14

Appendix A

WMI Interaction and Tools
A1. WMI CODE CREATOR

WMI Code Creator is a popular free tool made available by Microsoft.

The WMI Script interface allows for easy browsing of namespaces and classes that are all
listed in the drop down menus. In addition, Code Creator will generate code based on what
options have been selected. It lets the user choose which language to write the code: VB,
VB Script, or C#.

WMI Code Creator will generate code for WMI queries, method execution, and setting up
WMI events, which as discussed later in this paper is the most proactive defense available for
mitigating WMI attacks.

Figure A-1: After selecting namespace, class, and method script will be generated for user which
can be further modified. Users then need only supply desired value(s) for script if required.

User specified
namespace, class

and method

Some Methods may require
user input while others may
be optional or unavailable

 15

Here are a few links with a great introduction to Code Creator and a walkthrough for
performing queries, executing methods, and returning events with WMI Code Creator:

• http://hintdesk.com/introduction-to-wmi-code-creator/

• https://blogs.technet.microsoft.com/askperf/2010/02/01/two-minute-drill-wmi-code-creator/

A1.1 PowerShell
PowerShell is becoming more popular and more widely used for a variety of reasons. One

reason in particular PowerShell has become a popular method of interacting with WMI is the
existence of WMI cmdlets such as:

Get-WmiObject
Get-CimAssociatedInstance
Get-CimClass
Get-CimInstance
Get-CimSession
Set-WmiInstance
Set-CimInstance
Invoke-WmiMethod

Invoke-CimMethod
New-CimInstance
New-CimSession
New-CimSessionOption
Register-CimIndicationEvent
Register-WmiEvent
Remove-CimInstance
Remove-WmiObject
Remove-CimSession

Figure A-2: Powershell prompt and table of popular WMI cmdlets.

This is PowerShell code that detects WMI persistence on the specified remote system. It
shows just how easy it is to use PowerShell to interact with WMI.

Example:

User specifies cmdlet,
ps1 script or other

desired command to run

List of common
and popular WMI

cmdlets

http://hintdesk.com/introduction-to-wmi-code-creator/
https://blogs.technet.microsoft.com/askperf/2010/02/01/two-minute-drill-wmi-code-creator/

 16

A plethora of prewritten WMI PowerShell scripts and walkthroughs is available on the web.
An introduction to using PowerShell for event subscriptions can be found at these links:

• https://learn-powershell.net/2013/08/14/powershell-and-events-permanent-wmi-event-
subscriptions/

• https://learn-powershell.net/2013/08/02/powershell-and-events-wmi-temporary-event-
subscriptions/

A1.2 Wmic.exe
Wmic.exe is a powerful command line utility for interacting with WMI. It has a large amount

of default aliases for WMI objects, and users can perform more complicated queries.

Wmic.exe can execute WMI methods, and attackers use it to perform lateral movement by
using the Win32_ProcessCreate method.

Figure A-3: Administrators and malicious attackers can use the Wmic.exe terminal to execute
WMI methods.

In circumstances where PowerShell is not available, Wmic.exe is a sufficient alternative for
performing reconnaissance and basic method invocation.

A1.3 Wbemtest.exe
Wbemtest.exe is a powerful GUI WMI diagnostic tool. It isn’t pretty, but it sure is useful. It

allows you to explore deep into the WMI repository to discover what an administrator might be
able to harness in PowerShell scripts. It is able to enumerate object instances, class names, get
properties and methods, get property datatypes, perform queries, register events, modify WMI
objects and classes, and invoke methods both locally and remotely.

Used just like any
other CLI but for
executing WMI

methods

https://learn-powershell.net/2013/08/14/powershell-and-events-permanent-wmi-event-subscriptions/
https://learn-powershell.net/2013/08/14/powershell-and-events-permanent-wmi-event-subscriptions/
https://learn-powershell.net/2013/08/02/powershell-and-events-wmi-temporary-event-subscriptions/
https://learn-powershell.net/2013/08/02/powershell-and-events-wmi-temporary-event-subscriptions/

 17

Figure A-4: Wbemtest.exe dashboard once connected.

A1.4 WMI Explorer
WMI Explorer is a great WMI class discovery tool. It has a polished GUI that allows the user to
explore the WMI repository in a hierarchical fashion. It is also able to connect to remote WMI
repositories and perform queries.

Figure A-5: Contents of root\CIMV2 directory and WMI Explorer generated WQL language to
select all contents from Win32_Processor object

Class and
Instance Options

Namespace Exploration, Query
options and Method Execution

WMI Explorer generated WQL

Contents of root\CIMV2

 18

A1.5 CIM Studio
CIM Studio is a free, legacy tool from Microsoft that allows the user to easily browse the

WMI repository. Like WMI Explorer, this tool is good for WMI class discovery.

Figure A-6: Exploring down 5 levels into the root\CIMV2 directory and displaying the contents
of selected object.

Contents of
selected
event log

file

	1. INTRODUCTION
	1.1 High-Level WMI Architecture
	1.2 Remote WMI

	2. QUERYING WMI
	3. ATTACKER WMI DETECTION
	3.1 Existing Detection Utilities
	3.1.1 Sysinternals Autoruns
	3.1.2 Kansa

	4. DEFENSIVE WMI EVENTING
	4.1 The Two Classes of WMI Events
	4.2 Three Important Parts of a WMI Event
	4.3 Event Filters
	4.4 Event Consumers
	4.5 Filter to Consumer Binding

	5. EVENT TYPES
	5.1 Intrinsic Events
	5.2 Extrinsic Events

	6. USING WMI CLI COMMANDS FOR DETECTION AND REMOVAL OF MALICIOUS WMI
	6.1 Manual Detection: WMI Command Line Tool
	6.2 Manual Removal: WMI Command Line Tool
	6.3 WMI Intrusion Detection Using PowerShell Code Ex
	6.4 Event Logs

	7. ADDITIONAL WMI MITIGATION
	7.1 WMI Backup & Restore
	7.2 WMI Access Control

